{"title":"Generation of adaptive hexahedral meshes from surface and voxel geometric models","authors":"A.S. Karavaev, S.P. Kopysov","doi":"10.35634/vm230310","DOIUrl":null,"url":null,"abstract":"We present a modification of the developed hexahedral mesh generator from voxel data which allows constructing adaptive computational meshes. Construction of the refinement field is based on geometry features of the described model when it has a large thickness difference in dimensions or small and thin areas. A universal criterion for cells refinement is proposed which gives the possibility of its use in the case of volumetric (voxel) and surface (STL) representations of the model geometry. The refinement templates that provide conformal mesh closure are described. The results of the algorithm performance are given.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a modification of the developed hexahedral mesh generator from voxel data which allows constructing adaptive computational meshes. Construction of the refinement field is based on geometry features of the described model when it has a large thickness difference in dimensions or small and thin areas. A universal criterion for cells refinement is proposed which gives the possibility of its use in the case of volumetric (voxel) and surface (STL) representations of the model geometry. The refinement templates that provide conformal mesh closure are described. The results of the algorithm performance are given.