Numerical simulation of dense-phase pneumatic conveying in vertical pipe for gasifier

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED Polish Journal of Chemical Technology Pub Date : 2023-09-01 DOI:10.2478/pjct-2023-0020
Yuzhen Gao, Choon Kit Chan
{"title":"Numerical simulation of dense-phase pneumatic conveying in vertical pipe for gasifier","authors":"Yuzhen Gao, Choon Kit Chan","doi":"10.2478/pjct-2023-0020","DOIUrl":null,"url":null,"abstract":"Abstract The stable transportation of pulverized coal in the vertical pipe is significant for the operation of the gasifier. There are few studies on the flow characteristics and flow pattern transition of particles in vertical pipes with small diameters. This paper has modeled and analyzed the flow characteristic of powder in dense-phase pneumatic conveying through 25 mm vertical pipe using CFD. Firstly, the grid independence is verified to determine the optimal mesh size. Then, the influences of different solid loading ratios (SLRs) and conveying velocities on particle flow characteristics, flow stability, and flow pattern transition are investigated. The results show that the flow pattern in the vertical pipe changes from annular flow to uniform flow at high SLR and low conveying velocity. Moreover, the evolution regulation of resistance characteristics under different conveying velocities is further revealed. Considering the conveying stability and economic benefit, the most suitable conveying velocity is 6 m/s.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjct-2023-0020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The stable transportation of pulverized coal in the vertical pipe is significant for the operation of the gasifier. There are few studies on the flow characteristics and flow pattern transition of particles in vertical pipes with small diameters. This paper has modeled and analyzed the flow characteristic of powder in dense-phase pneumatic conveying through 25 mm vertical pipe using CFD. Firstly, the grid independence is verified to determine the optimal mesh size. Then, the influences of different solid loading ratios (SLRs) and conveying velocities on particle flow characteristics, flow stability, and flow pattern transition are investigated. The results show that the flow pattern in the vertical pipe changes from annular flow to uniform flow at high SLR and low conveying velocity. Moreover, the evolution regulation of resistance characteristics under different conveying velocities is further revealed. Considering the conveying stability and economic benefit, the most suitable conveying velocity is 6 m/s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气化炉垂直管道密相气力输送数值模拟
煤粉在垂直管道内的稳定输送对气化炉的运行具有重要意义。对于颗粒在小直径垂直管内的流动特性和流型转变的研究很少。本文利用CFD模拟分析了粉末在25 mm垂直管道密相气力输送中的流动特性。首先,验证网格独立性,确定最优网格尺寸;然后,研究了不同固载比和输送速度对颗粒流动特性、流动稳定性和流型转变的影响。结果表明:在高SLR和低输送速度条件下,垂直管内的流动由环空流动转变为均匀流动;进一步揭示了不同输送速度下阻力特性的演变规律。考虑到输送稳定性和经济效益,最适宜的输送速度为6m /s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polish Journal of Chemical Technology
Polish Journal of Chemical Technology CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.70
自引率
10.00%
发文量
22
审稿时长
4.5 months
期刊介绍: Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.
期刊最新文献
A Comprehensive Analysis of the Hydrogen Generation Technology Through Electrochemical Water and Industrial Wastewater Electrolysis Sulfonation Modification of Guar Gum and Its Performance as a Fracturing Fluids Thickener Synthesis and Self-assembly of a Simple CO2-responsive Diblock Polymer Preparation of nano SnO2-Sb2O3 composite electrode by cathodic deposition for the elimination of phenol by Sonoelectrochemical oxidation Synthesis and characterization of curcumin-encapsulated loaded on carboxymethyl cellulose with docking validation as α-amylase and α-glucosidase inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1