Pengfei Zhang, Xianwu Jing, Lang Zhou, Qiang Liu, Yadong Zhang
Methoxypolyethylene glycol 1900 and α-bromoisobutanoyl bromide were utilized for alcoholysis reaction to obtain a macromolecular initiator. Then, a simple amphiphilic diblockpolymer (mPEG-PDMAEMA) based on the initiator and dimethylaminoethyl methacrylate was synthesized through the atomic transfer radical polymerization (ATRP) method. The structures of the initiator and diblock polymer were accurately characterized using infrared spectrum and proton nuclear magnetic resonance spectroscopy (1H NMR). Cryo-transmission electron microscopy revealed the self-assembly of mPEG-PDMAEMA into vesicle-like structures in water. Upon injection of CO2 into the solution, the tertiary amine structure within PDMAEMA underwent protonation, resulting in the mPEG-PDMAEMA adopting a hydrophilic structure. Consequently, the vesicles dissociated and dispersed, forming a network-like structure in water. The protonation phenomenon was confirmed by 1H NMR, as evidenced by the shifting of alkyl hydrogen atoms near nitrogen atoms toward downfield positions.
{"title":"Synthesis and Self-assembly of a Simple CO2-responsive Diblock Polymer","authors":"Pengfei Zhang, Xianwu Jing, Lang Zhou, Qiang Liu, Yadong Zhang","doi":"10.2478/pjct-2024-0025","DOIUrl":"https://doi.org/10.2478/pjct-2024-0025","url":null,"abstract":"Methoxypolyethylene glycol 1900 and α-bromoisobutanoyl bromide were utilized for alcoholysis reaction to obtain a macromolecular initiator. Then, a simple amphiphilic diblockpolymer (mPEG-PDMAEMA) based on the initiator and dimethylaminoethyl methacrylate was synthesized through the atomic transfer radical polymerization (ATRP) method. The structures of the initiator and diblock polymer were accurately characterized using infrared spectrum and proton nuclear magnetic resonance spectroscopy (<jats:sup>1</jats:sup>H NMR). Cryo-transmission electron microscopy revealed the self-assembly of mPEG-PDMAEMA into vesicle-like structures in water. Upon injection of CO<jats:sub>2</jats:sub> into the solution, the tertiary amine structure within PDMAEMA underwent protonation, resulting in the mPEG-PDMAEMA adopting a hydrophilic structure. Consequently, the vesicles dissociated and dispersed, forming a network-like structure in water. The protonation phenomenon was confirmed by <jats:sup>1</jats:sup>H NMR, as evidenced by the shifting of alkyl hydrogen atoms near nitrogen atoms toward downfield positions.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"8 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qusay Al-Obaidi, Dhorgham Skban Ibrahim, M.N. Mohammed, Abbas J. Sultan, Faris H. Al-Ani, Thamer Adnan Abdullah, Oday I. Abdullah, Nora Yehia Selem
Most renewable energy sources are intermittent and seasonal, making energy storage and consumption problematic. Hydrogen gas can save and convey chemical energy, making it a promising sustainable energy source. Electrochemical water electrolysis technology’s sustainable and efficient hydrogen gas production attracts global attention. Higher hydrogen production rates enhance hydrogen volumetric energy capacity by storing intermittent hydrogen gas in high-pressure tanks. Pressurized storage tanks are cost-effective and efficient. Hydrogen gas may be stored economically and efficiently in pressurized tanks, making electrochemical water electrolysis a sustainable energy source. This paper introduced hydrogen as an alternative to natural gas, detailed water electrolysis technologies for hydrogen production, and highlighted how they can manufacture hydrogen efficiently and cost-effectively. The theoretical volume of gaseous hydrogen and oxygen that could be produced by electrolyzing water under typical temperature and pressure (STP) circumstances, assuming a 100% efficiency rate of the process. Since there are always two moles of hydrogen produced by electrolysis and one mole of gas occupies the same volume, the volume of hydrogen developed from water is twice that of oxygen. The volume of liberated oxygen is 0.21 (L/min), and the volume of liberated hydrogen is 0.42 (L/min) with a current density of 30 A, for instance, the tracer’s diffusion coefficient for all conceivable flow rates. A maximum value of 90 liters per hour was determined to be the threshold at which the diffusion coefficient increased with increasing flow rate. It would appear that the diffusion coefficient remains unchanged at flow rates greater than 90 liters per hour.
{"title":"A Comprehensive Analysis of the Hydrogen Generation Technology Through Electrochemical Water and Industrial Wastewater Electrolysis","authors":"Qusay Al-Obaidi, Dhorgham Skban Ibrahim, M.N. Mohammed, Abbas J. Sultan, Faris H. Al-Ani, Thamer Adnan Abdullah, Oday I. Abdullah, Nora Yehia Selem","doi":"10.2478/pjct-2024-0028","DOIUrl":"https://doi.org/10.2478/pjct-2024-0028","url":null,"abstract":"Most renewable energy sources are intermittent and seasonal, making energy storage and consumption problematic. Hydrogen gas can save and convey chemical energy, making it a promising sustainable energy source. Electrochemical water electrolysis technology’s sustainable and efficient hydrogen gas production attracts global attention. Higher hydrogen production rates enhance hydrogen volumetric energy capacity by storing intermittent hydrogen gas in high-pressure tanks. Pressurized storage tanks are cost-effective and efficient. Hydrogen gas may be stored economically and efficiently in pressurized tanks, making electrochemical water electrolysis a sustainable energy source. This paper introduced hydrogen as an alternative to natural gas, detailed water electrolysis technologies for hydrogen production, and highlighted how they can manufacture hydrogen efficiently and cost-effectively. The theoretical volume of gaseous hydrogen and oxygen that could be produced by electrolyzing water under typical temperature and pressure (STP) circumstances, assuming a 100% efficiency rate of the process. Since there are always two moles of hydrogen produced by electrolysis and one mole of gas occupies the same volume, the volume of hydrogen developed from water is twice that of oxygen. The volume of liberated oxygen is 0.21 (L/min), and the volume of liberated hydrogen is 0.42 (L/min) with a current density of 30 A, for instance, the tracer’s diffusion coefficient for all conceivable flow rates. A maximum value of 90 liters per hour was determined to be the threshold at which the diffusion coefficient increased with increasing flow rate. It would appear that the diffusion coefficient remains unchanged at flow rates greater than 90 liters per hour.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"20 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yonggen Yi, Lanbing Wu, Jie Zhang, Haiyang Wang, Xuan Xie, Chen Gang
To solve the contradiction between reducing water-insoluble content and maintaining high viscosity in the preparation of modified guar gum for oilfield fracturing fluid, in this work, sodium 3-chloro-2-hydroxypropylsulfonate was used as a modifier to prepare sulfonated guar gum. Orthogonal and single-factor extrapolation experiments were conducted to explore the effects of reaction conditions and the optimal process was determined as follows: reaction temperature of 26 oC, reaction time of 2.0 h, sodium hydroxide as a mass fraction of guar gum of 1.0%, and sodium 3-chloro-2-hydroxypropyl sulfonate dosage as a mass fraction of guar gum of 0.5%. Furtherly, the temperature stability, filtration property, and inhibition of formation clay of the sulfonated products were investigated. The results showed that the apparent viscosity of 0.6% solution of guar gum was increased by 33%, the water-insoluble content was decreased by 0.42%, and the temperature stability, filtration resistance, and clay inhibition were all improved. Especially, the viscosity of cross-linked sulfonated guar gum is 100% higher than that of unmodified guar gum. The structure of sulfonated guar gum was characterized and confirmed by infrared spectrum, DSC, thermogravimetric, and elemental analysis.
{"title":"Sulfonation Modification of Guar Gum and Its Performance as a Fracturing Fluids Thickener","authors":"Yonggen Yi, Lanbing Wu, Jie Zhang, Haiyang Wang, Xuan Xie, Chen Gang","doi":"10.2478/pjct-2024-0027","DOIUrl":"https://doi.org/10.2478/pjct-2024-0027","url":null,"abstract":"To solve the contradiction between reducing water-insoluble content and maintaining high viscosity in the preparation of modified guar gum for oilfield fracturing fluid, in this work, sodium 3-chloro-2-hydroxypropylsulfonate was used as a modifier to prepare sulfonated guar gum. Orthogonal and single-factor extrapolation experiments were conducted to explore the effects of reaction conditions and the optimal process was determined as follows: reaction temperature of 26 <jats:sup>o</jats:sup>C, reaction time of 2.0 h, sodium hydroxide as a mass fraction of guar gum of 1.0%, and sodium 3-chloro-2-hydroxypropyl sulfonate dosage as a mass fraction of guar gum of 0.5%. Furtherly, the temperature stability, filtration property, and inhibition of formation clay of the sulfonated products were investigated. The results showed that the apparent viscosity of 0.6% solution of guar gum was increased by 33%, the water-insoluble content was decreased by 0.42%, and the temperature stability, filtration resistance, and clay inhibition were all improved. Especially, the viscosity of cross-linked sulfonated guar gum is 100% higher than that of unmodified guar gum. The structure of sulfonated guar gum was characterized and confirmed by infrared spectrum, DSC, thermogravimetric, and elemental analysis.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"11 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdulrahman A. Almehizia, Mohamed A. Al-Omar, Abdulrahman M. Al-Obaid, Ahmed M. Naglah, Mashooq A. Bhat, Hazem A. Ghabbour, Tamer K. Khatab, Ashraf S. Hassan
In reaction to the expanding predominance of diabetes mellitus, curcumin nanoparticles stacked on carboxymethyl cellulose (CMC) composite were effectively synthesized, characterized, and examined utilizing UV/Vis and FTIR spectroscopy combined with transmission electron microscopy (TEM). The bioactivity of curcumin (Cur), carboxymethyl cellulose (CMC), and curcumin nanoparticles stacked with carboxymethyl cellulose (CUR-CMC) was tried through atomic docking approval as an α-amylase and α-glucosidase inhibitor. The conclusion illustrated that the curcumin-supported CMC is more potent than CUR itself self the validation presented is compared with acarbose as a reference molecule and then CUR-CMC can presented as promising in curing hyperglycemia by decreasing the absorption of glucose.
{"title":"Synthesis and characterization of curcumin-encapsulated loaded on carboxymethyl cellulose with docking validation as α-amylase and α-glucosidase inhibitors","authors":"Abdulrahman A. Almehizia, Mohamed A. Al-Omar, Abdulrahman M. Al-Obaid, Ahmed M. Naglah, Mashooq A. Bhat, Hazem A. Ghabbour, Tamer K. Khatab, Ashraf S. Hassan","doi":"10.2478/pjct-2024-0031","DOIUrl":"https://doi.org/10.2478/pjct-2024-0031","url":null,"abstract":"In reaction to the expanding predominance of diabetes mellitus, curcumin nanoparticles stacked on carboxymethyl cellulose (CMC) composite were effectively synthesized, characterized, and examined utilizing UV/Vis and FTIR spectroscopy combined with transmission electron microscopy (TEM). The bioactivity of curcumin (Cur), carboxymethyl cellulose (CMC), and curcumin nanoparticles stacked with carboxymethyl cellulose (CUR-CMC) was tried through atomic docking approval as an α-amylase and α-glucosidase inhibitor. The conclusion illustrated that the curcumin-supported CMC is more potent than CUR itself self the validation presented is compared with acarbose as a reference molecule and then CUR-CMC can presented as promising in curing hyperglycemia by decreasing the absorption of glucose.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"27 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hind Jabbar Nsaif, Najwa Saber Majeed, Rasha H. Salman
The preparation of composite metal oxide to attain high efficiency in removing phenol from wastewater has a great concern. In the present study, the focus would be on adopting antimony-tin oxide coating onto graphite substrates instead of titanium; besides the effect of SbCl3 concentration on the SnO2-Sb2O3 composite would be examined. The performance of this composite electrode as the working electrode in the removal of phenol by sonoelectrochemical oxidation will be studied. The antimony-tin dioxide composite electrode was prepared by cathodic deposition with SnCl2 . 2H2O solution in a mixture of HNO3 and NaNO3, with different concentrations of SbCl3. The SnO2-Sb2O3 deposit layer’s structure and morphology were examined and the 4 g/l SbCl3 gave the more crystallized with nanoscale electrodeposition. The highest removal of phenol was 100% at a temperature of 30 oC, with a current density (CD) of 25 mA/cm2.
{"title":"Preparation of nano SnO2-Sb2O3 composite electrode by cathodic deposition for the elimination of phenol by Sonoelectrochemical oxidation","authors":"Hind Jabbar Nsaif, Najwa Saber Majeed, Rasha H. Salman","doi":"10.2478/pjct-2024-0026","DOIUrl":"https://doi.org/10.2478/pjct-2024-0026","url":null,"abstract":"The preparation of composite metal oxide to attain high efficiency in removing phenol from wastewater has a great concern. In the present study, the focus would be on adopting antimony-tin oxide coating onto graphite substrates instead of titanium; besides the effect of SbCl<jats:sub>3</jats:sub> concentration on the SnO2-Sb<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> composite would be examined. The performance of this composite electrode as the working electrode in the removal of phenol by sonoelectrochemical oxidation will be studied. The antimony-tin dioxide composite electrode was prepared by cathodic deposition with SnCl<jats:sub>2</jats:sub> . 2H<jats:sub>2</jats:sub>O solution in a mixture of HNO<jats:sub>3</jats:sub> and NaNO<jats:sub>3</jats:sub>, with different concentrations of SbCl<jats:sub>3</jats:sub>. The SnO<jats:sub>2</jats:sub>-Sb<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> deposit layer’s structure and morphology were examined and the 4 g/l SbCl<jats:sub>3</jats:sub> gave the more crystallized with nanoscale electrodeposition. The highest removal of phenol was 100% at a temperature of 30 <jats:sup>o</jats:sup>C, with a current density (CD) of 25 mA/cm<jats:sup>2</jats:sup>.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"2 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rising energy prices have increased the popularity of many renewable energy sources including heat pumps. In the case of ground heat pumps research related to the analysis of the operation and selection of ground heat exchangers as a heat source are insufficient. With this in mind, on the operation of the horizontal slinky coil heat exchanger research work has been undertaken. As a research tool, the Computational Fluid Dynamics has been used. To check the adequacy of the CFD model, a validation of the model was carried out using the results of research on a real heat exchanger. Comparison was made: values of ground temperatures, outlet temperatures from the exchanger, and heat flux exchanged by the heat exchanger. In the opinion of the authors, the validation of the CFD model was successful.
{"title":"Experimental validation of a CFD model of a ground heat exchanger with slinky coils","authors":"Robert Grzywacz, Mikołaj Teper","doi":"10.2478/pjct-2024-0022","DOIUrl":"https://doi.org/10.2478/pjct-2024-0022","url":null,"abstract":"Rising energy prices have increased the popularity of many renewable energy sources including heat pumps. In the case of ground heat pumps research related to the analysis of the operation and selection of ground heat exchangers as a heat source are insufficient. With this in mind, on the operation of the horizontal slinky coil heat exchanger research work has been undertaken. As a research tool, the Computational Fluid Dynamics has been used. To check the adequacy of the CFD model, a validation of the model was carried out using the results of research on a real heat exchanger. Comparison was made: values of ground temperatures, outlet temperatures from the exchanger, and heat flux exchanged by the heat exchanger. In the opinion of the authors, the validation of the CFD model was successful.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"44 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of the agitators configuration, the agitator speed, the volumetric gas flow rate, the sucrose concentration in aqueous solution, and the yeast suspension concentration on the hydrodynamics of two- or three-phase systems in an agitated vessel with two agitators has been presented in this paper. The gas hold-up and the average residence time of the bubbles were measured in agitated vessel with a liquid height of H = 2D and the internal diameter of D = 0.288 m. The study was carried out for gas-liquid and biophase-gas-liquid systems, where the gas phase was air, the liquid phase was distilled water or an aqueous solution of sucrose (c = 2.5% mass., 5% mass.), and the biophase was a suspension of Saccharomyces cerevisiae yeast (ys = 1% mass.). The research results were analysed taking into account the influence of the type of the upper or lower agitator, agitator speed, gas flow rate, and type of liquid in the system on the gas hold-up and the average residence time of the gas bubbles. The experimental results were mathematically described.
{"title":"Hydrodynamics of two- and three-phase systems in an agitated vessel with two agitators","authors":"Magdalena Cudak","doi":"10.2478/pjct-2024-0013","DOIUrl":"https://doi.org/10.2478/pjct-2024-0013","url":null,"abstract":"The effect of the agitators configuration, the agitator speed, the volumetric gas flow rate, the sucrose concentration in aqueous solution, and the yeast suspension concentration on the hydrodynamics of two- or three-phase systems in an agitated vessel with two agitators has been presented in this paper. The gas hold-up and the average residence time of the bubbles were measured in agitated vessel with a liquid height of H = <jats:italic>2D</jats:italic> and the internal diameter of <jats:italic>D</jats:italic> = 0.288 m. The study was carried out for gas-liquid and biophase-gas-liquid systems, where the gas phase was air, the liquid phase was distilled water or an aqueous solution of sucrose (c = 2.5% mass., 5% mass.), and the biophase was a suspension of Saccharomyces cerevisiae yeast (y<jats:sub>s</jats:sub> = 1% mass.). The research results were analysed taking into account the influence of the type of the upper or lower agitator, agitator speed, gas flow rate, and type of liquid in the system on the gas hold-up and the average residence time of the gas bubbles. The experimental results were mathematically described.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"7 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study focused on investigating the heat transfer and flow dynamics of a catalyst granule within a pilot calciner, employing both numerical modeling and computational fluid dynamics. The research comprised two primary components: (1) Simulation of the gas flow within the pilot calciner using the Eulerian–Eulerian approach, treating gases and catalyst particles as distinct phases – gas and granular. The model, encapsulating both heat transfer and flow processes, was developed in Fluent software version 16.0. Its accuracy was confirmed against empirical data from a pilot-scale calciner unit. (2) Subsequent to validation, the model was utilized to examine the distribution characteristics within the flow field, including the temperature profiles of gas and particles, the vector velocity field of the gas across different phases, and the overall heat transfer coefficient. This investigation aims to enhance the understanding of the complex heat transfer and flow dynamics in calciners, facilitating the optimization of operational parameters, performance, and structure of pilot-scale equipment. Furthermore, it provides foundational data pertinent to the future exploration of real-world industrial applications.
{"title":"Numerical Modeling of Heat Transfer and Flow Field in a Novel Calcinator","authors":"Tie-zhuang Zhou, Bin Yang, Cheng-qiang Wang","doi":"10.2478/pjct-2024-0015","DOIUrl":"https://doi.org/10.2478/pjct-2024-0015","url":null,"abstract":"This study focused on investigating the heat transfer and flow dynamics of a catalyst granule within a pilot calciner, employing both numerical modeling and computational fluid dynamics. The research comprised two primary components: (1) Simulation of the gas flow within the pilot calciner using the Eulerian–Eulerian approach, treating gases and catalyst particles as distinct phases – gas and granular. The model, encapsulating both heat transfer and flow processes, was developed in Fluent software version 16.0. Its accuracy was confirmed against empirical data from a pilot-scale calciner unit. (2) Subsequent to validation, the model was utilized to examine the distribution characteristics within the flow field, including the temperature profiles of gas and particles, the vector velocity field of the gas across different phases, and the overall heat transfer coefficient. This investigation aims to enhance the understanding of the complex heat transfer and flow dynamics in calciners, facilitating the optimization of operational parameters, performance, and structure of pilot-scale equipment. Furthermore, it provides foundational data pertinent to the future exploration of real-world industrial applications.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"30 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As one single membrane material could not fulfill the requests of chemical stability, mechanical strength, and resistance to pollution in practical applications. Modifications of the membrane to improve its separation performance were of great significance. In this study, UV irradiation grafting modification was employed and butyl acrylate was selected as a modification monomer for polyimide membrane to improve its lipophilicity and separation efficiency in lubricant solvent recovery. And effects of monomer concentration, irradiation distance, and grafting time on the grafting results and separation properties of modified polyimide membranes were investigated. The results exhibited that modified polyimide membranes obtained an enhanced lubricant retention rate compared with raw membranes, which increased from 66.5% to 93.1%. The industrial test for 40 days proved the great stability of modified polyimide membranes. Overall, this work confirmed the good industrial utilization potential of modified polyimide membranes and offered an effective way for lubricant solvent recovery.
{"title":"UV irradiation grafting of butyl acrylate on polyimide membrane for enhanced lubricant solvent recovery","authors":"Huilong Shi, Deqing Shi, Bowen Liu, Chengshuai Li, Hongjie Chen","doi":"10.2478/pjct-2024-0020","DOIUrl":"https://doi.org/10.2478/pjct-2024-0020","url":null,"abstract":"As one single membrane material could not fulfill the requests of chemical stability, mechanical strength, and resistance to pollution in practical applications. Modifications of the membrane to improve its separation performance were of great significance. In this study, UV irradiation grafting modification was employed and butyl acrylate was selected as a modification monomer for polyimide membrane to improve its lipophilicity and separation efficiency in lubricant solvent recovery. And effects of monomer concentration, irradiation distance, and grafting time on the grafting results and separation properties of modified polyimide membranes were investigated. The results exhibited that modified polyimide membranes obtained an enhanced lubricant retention rate compared with raw membranes, which increased from 66.5% to 93.1%. The industrial test for 40 days proved the great stability of modified polyimide membranes. Overall, this work confirmed the good industrial utilization potential of modified polyimide membranes and offered an effective way for lubricant solvent recovery.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"32 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Hussine AlSarji, Shurooq Talib Al-Humairi, Riyadh Sadeq AlMukhtar, Saja Mohsen Alardhi, Mohamed Sulyman, I.M.R. Fattah
Currently, adsorption stands as a viable technique for the effective removal of pollutants such as heavy metals from water. Within this research endeavor, adapted green algae (Coelastrella sp.) have been harnessed as a sustainable and environmentally conscious adsorbent, employed in the removal of Hg(II) ions from a simulated aqueous solution via employment of an Airlift bioreactor. The analysis of the attributes of adsorbent was conducted through the utilization of Fourier transform infrared (FTIR) spectroscopy. The examination of residual concentrations of Hg(II) ions in the treated solution was accomplished through the utilization of atomic absorption spectroscopy (AAS). The impact of various experimental factors, including the duration of contact (ranging from 10 to 90 minutes), initial concentrations of Hg(II) ions (ranging from 500 to 2000 μg/l), quantity of adsorbent introduced (ranging from 0.1 to 0.7 g per 250 ml), temperature variations (ranging from 20 to 40 °C), and airflow velocity (ranging from 200 to 300 ml/min), was systematically examined. For the optimization of adsorption efficiency, MINITAB 18 software was employed. The equilibrium data was subjected to analysis using the Langmuir, Freundlich, and Temkin isotherm models. Employing the framework recommended by MINITAB 18, the optimal parameters for adsorption were identified as 2000 μg/l for initial concentration, 90 minutes for contact time, 40 °C for temperature, and 300 ml/min for airflow rate. The Langmuir equation yielded the highest adsorption capacity, measuring 750 μg/g at a temperature of 40 °C.
{"title":"Response surface methodology approach for optimization of biosorption process for removal of Hg(II) ions by immobilized Algal biomass Coelastrella sp.","authors":"Ali Hussine AlSarji, Shurooq Talib Al-Humairi, Riyadh Sadeq AlMukhtar, Saja Mohsen Alardhi, Mohamed Sulyman, I.M.R. Fattah","doi":"10.2478/pjct-2024-0019","DOIUrl":"https://doi.org/10.2478/pjct-2024-0019","url":null,"abstract":"Currently, adsorption stands as a viable technique for the effective removal of pollutants such as heavy metals from water. Within this research endeavor, adapted green algae (<jats:italic>Coelastrella sp.</jats:italic>) have been harnessed as a sustainable and environmentally conscious adsorbent, employed in the removal of Hg(II) ions from a simulated aqueous solution via employment of an Airlift bioreactor. The analysis of the attributes of adsorbent was conducted through the utilization of Fourier transform infrared (FTIR) spectroscopy. The examination of residual concentrations of Hg(II) ions in the treated solution was accomplished through the utilization of atomic absorption spectroscopy (AAS). The impact of various experimental factors, including the duration of contact (ranging from 10 to 90 minutes), initial concentrations of Hg(II) ions (ranging from 500 to 2000 <jats:italic>μ</jats:italic>g/l), quantity of adsorbent introduced (ranging from 0.1 to 0.7 g per 250 ml), temperature variations (ranging from 20 to 40 °C), and airflow velocity (ranging from 200 to 300 ml/min), was systematically examined. For the optimization of adsorption efficiency, MINITAB 18 software was employed. The equilibrium data was subjected to analysis using the Langmuir, Freundlich, and Temkin isotherm models. Employing the framework recommended by MINITAB 18, the optimal parameters for adsorption were identified as 2000 <jats:italic>μ</jats:italic>g/l for initial concentration, 90 minutes for contact time, 40 °C for temperature, and 300 ml/min for airflow rate. The Langmuir equation yielded the highest adsorption capacity, measuring 750 <jats:italic>μ</jats:italic>g/g at a temperature of 40 °C.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"27 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141611256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}