YOLOv3 and YOLOv5-based automated facial mask detection and recognition systems to prevent COVID-19 outbreaks

Md Asifuzzaman Jishan, Ananna Islam Bedushe, Md Ataullah Khan Rifat, Bijan Paul, Khan Raqib Mahmud
{"title":"YOLOv3 and YOLOv5-based automated facial mask detection and recognition systems to prevent COVID-19 outbreaks","authors":"Md Asifuzzaman Jishan, Ananna Islam Bedushe, Md Ataullah Khan Rifat, Bijan Paul, Khan Raqib Mahmud","doi":"10.31763/sitech.v4i1.1199","DOIUrl":null,"url":null,"abstract":"Object detection system in light of deep learning have been monstrously effective in complex item identification task images and have shown likely in an extensive variety of genuine applications counting the Coronavirus pandemic. Ensuring and enforcing the proper use of face masks is one of the main obstacles in containing and reducing the spread of the infection among the population. This paper aims to find out how the urban population of a megacity uses facial masks correctly. Using YOLOv3 and YOLOv5, we trained and validated a brand-new dataset to identify images as \"with mask\", \"without mask\", and \"mask not in position\". In the YOLOv3 we carried out three pre-trained models which are: YOLOv3, YOLOv3-tiny, and SPP-YOLOv3. In addition, we utilized five pre-trained models in the YOLOv5: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The dataset is included 6550 pictures with three classes. On mAP, the dataset achieved a commendable 95% performance accuracy. This research can be used to monitor the proper use of face masks in various public spaces through automated scanning.","PeriodicalId":123344,"journal":{"name":"Science in Information Technology Letters","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in Information Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31763/sitech.v4i1.1199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection system in light of deep learning have been monstrously effective in complex item identification task images and have shown likely in an extensive variety of genuine applications counting the Coronavirus pandemic. Ensuring and enforcing the proper use of face masks is one of the main obstacles in containing and reducing the spread of the infection among the population. This paper aims to find out how the urban population of a megacity uses facial masks correctly. Using YOLOv3 and YOLOv5, we trained and validated a brand-new dataset to identify images as "with mask", "without mask", and "mask not in position". In the YOLOv3 we carried out three pre-trained models which are: YOLOv3, YOLOv3-tiny, and SPP-YOLOv3. In addition, we utilized five pre-trained models in the YOLOv5: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The dataset is included 6550 pictures with three classes. On mAP, the dataset achieved a commendable 95% performance accuracy. This research can be used to monitor the proper use of face masks in various public spaces through automated scanning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于YOLOv3和yolov5的自动口罩检测和识别系统,防止COVID-19爆发
基于深度学习的物体检测系统在复杂的物品识别任务图像中非常有效,并且可能在包括冠状病毒大流行在内的各种真实应用中显示出来。确保和强制正确使用口罩是控制和减少感染在人群中传播的主要障碍之一。本文的目的是找出一个超大城市的城市人口如何正确使用口罩。使用YOLOv3和YOLOv5,我们训练并验证了一个全新的数据集,以识别图像为“带掩码”,“不带掩码”和“掩码不在位置”。在YOLOv3中,我们进行了三个预训练模型:YOLOv3, YOLOv3-tiny和SPP-YOLOv3。此外,我们在YOLOv5中使用了五个预训练模型:YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l和YOLOv5x。该数据集包括6550张图片,分为三类。在mAP上,数据集达到了值得称赞的95%的性能准确率。本研究可通过自动扫描监测各种公共场所口罩的正确使用情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving sentiment analysis on PeduliLindungi comments: a comparative study with CNN-Word2Vec and integrated negation handling Vision-based chicken meat freshness recognition system using RGB color moment features and support vector machine Forging a learner-centric blended-learning framework via an adaptive content-based architecture YOLOv3 and YOLOv5-based automated facial mask detection and recognition systems to prevent COVID-19 outbreaks Optimizing CNN hyperparameters with genetic algorithms for face mask usage classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1