Engineering an All-Biobased Solvent- and Styrene-Free Curable Resin

IF 4.7 Q1 POLYMER SCIENCE ACS polymers Au Pub Date : 2023-10-03 DOI:10.1021/acspolymersau.3c00015
Samson Afewerki*,  and , Ulrica Edlund*, 
{"title":"Engineering an All-Biobased Solvent- and Styrene-Free Curable Resin","authors":"Samson Afewerki*,&nbsp; and ,&nbsp;Ulrica Edlund*,&nbsp;","doi":"10.1021/acspolymersau.3c00015","DOIUrl":null,"url":null,"abstract":"<p >The sustainable production of polymers and materials derived from renewable feedstocks such as biomass is vital to addressing the current climate and environmental challenges. In particular, finding a replacement for current widely used curable resins containing undesired components with both health and environmental issues, such as bisphenol-A and styrene, is of great interest and vital for a sustainable society. In this work, we disclose the preparation and fabrication of an all-biobased curable resin. The devised resin consists of a polyester component based on fumaric acid, itaconic acid, 2,5-furandicarboxylic acid, 1,4-butanediol, and reactive diluents acting as both solvents and viscosity enhancers. Importantly, the complete process was performed solvent-free, thus promoting its industrial applications. The cured biobased resin demonstrates very good thermal properties (stable up to 415 °C), the ability to resist deformation based on the high Young’s modulus of ∼775 MPa, and chemical resistance based on the swelling index and gel content. We envision the disclosed biobased resin having tailorable properties suitable for industrial applications.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 6","pages":"447–456"},"PeriodicalIF":4.7000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acspolymersau.3c00015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.3c00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The sustainable production of polymers and materials derived from renewable feedstocks such as biomass is vital to addressing the current climate and environmental challenges. In particular, finding a replacement for current widely used curable resins containing undesired components with both health and environmental issues, such as bisphenol-A and styrene, is of great interest and vital for a sustainable society. In this work, we disclose the preparation and fabrication of an all-biobased curable resin. The devised resin consists of a polyester component based on fumaric acid, itaconic acid, 2,5-furandicarboxylic acid, 1,4-butanediol, and reactive diluents acting as both solvents and viscosity enhancers. Importantly, the complete process was performed solvent-free, thus promoting its industrial applications. The cured biobased resin demonstrates very good thermal properties (stable up to 415 °C), the ability to resist deformation based on the high Young’s modulus of ∼775 MPa, and chemical resistance based on the swelling index and gel content. We envision the disclosed biobased resin having tailorable properties suitable for industrial applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计一种全生物基不含溶剂和苯乙烯的可固化树脂
以可再生原料(如生物质)为原料的聚合物和材料的可持续生产对于应对当前的气候和环境挑战至关重要。特别是,目前广泛使用的可固化树脂中含有双酚 A 和苯乙烯等有害健康和环境的成分,找到替代品对实现可持续发展的社会至关重要。在这项工作中,我们公开了一种全生物基固化树脂的制备和制造方法。所设计的树脂由富马酸、衣康酸、2,5-呋喃二甲酸、1,4-丁二醇和同时用作溶剂和增粘剂的活性稀释剂组成。重要的是,整个过程在无溶剂的情况下进行,从而促进了其工业应用。固化后的生物基树脂具有非常好的热性能(稳定温度可达 415 °C),杨氏模量高达 775 兆帕,具有抗变形能力,膨胀指数和凝胶含量具有耐化学性。我们设想所公开的生物基树脂具有适合工业应用的可定制特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Design of Highly Conductive PILs by Simple Modification of Poly(epichlorohydrin-co-ethylene oxide) with Monosubstituted Imidazoles Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1