{"title":"Comparison of classical machine learning approaches with hybrid quantum approaches in applied problems","authors":"S.K. Akhmed","doi":"10.17759/mda.2023130307","DOIUrl":null,"url":null,"abstract":"<p>The work is aimed at analyzing the potential advantages of using quantum approaches in applied problems of artificial intelligence. In this paper, the task of classifying medical images extracted from histopathological images of sections of lymph nodes is set. The theoretical basis used for the construction of quantum and hybrid-quantum computing elements used in the article will be given. Quantum analogues of classical machine learning algorithms and neural networks will be considered. The paper will give a step-by-step description of the data transformation, the construction of models and their training, followed by an analysis of the results obtained and the performance of the simulation of quantum computing.</p>","PeriodicalId":498071,"journal":{"name":"Modelirovanie i analiz dannyh","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelirovanie i analiz dannyh","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17759/mda.2023130307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The work is aimed at analyzing the potential advantages of using quantum approaches in applied problems of artificial intelligence. In this paper, the task of classifying medical images extracted from histopathological images of sections of lymph nodes is set. The theoretical basis used for the construction of quantum and hybrid-quantum computing elements used in the article will be given. Quantum analogues of classical machine learning algorithms and neural networks will be considered. The paper will give a step-by-step description of the data transformation, the construction of models and their training, followed by an analysis of the results obtained and the performance of the simulation of quantum computing.