Vasile Păis,, Maria Mitrofan, Carol Luca Gasan, Alexandru Ianov, Corvin Ghit,ă, Vlad Silviu Coneschi, Andrei Onut,
{"title":"LegalNERo: A linked corpus for named entity recognition in the Romanian legal domain","authors":"Vasile Păis,, Maria Mitrofan, Carol Luca Gasan, Alexandru Ianov, Corvin Ghit,ă, Vlad Silviu Coneschi, Andrei Onut,","doi":"10.3233/sw-233351","DOIUrl":null,"url":null,"abstract":"LegalNERo is a manually annotated corpus for named entity recognition in the Romanian legal domain. It provides gold annotations for organizations, locations, persons, time expressions and legal resources mentioned in legal documents. Furthermore, GeoNames identifiers are provided. The resource is available in multiple formats, including span-based, token-based and RDF. The Linked Open Data version is available for both download and querying using SPARQL.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"21 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sw-233351","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
LegalNERo is a manually annotated corpus for named entity recognition in the Romanian legal domain. It provides gold annotations for organizations, locations, persons, time expressions and legal resources mentioned in legal documents. Furthermore, GeoNames identifiers are provided. The resource is available in multiple formats, including span-based, token-based and RDF. The Linked Open Data version is available for both download and querying using SPARQL.
Semantic WebCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍:
The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.