An ontology of 3D environment where a simulated manipulation task takes place (ENVON)

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Semantic Web Pub Date : 2023-12-18 DOI:10.3233/sw-233460
Yingshen Zhao, Arkopaul Sarkar, Linda Elmhadhbi, Mohamed-Hedi Karray, P. Fillatreau, B. Archimède
{"title":"An ontology of 3D environment where a simulated manipulation task takes place (ENVON)","authors":"Yingshen Zhao, Arkopaul Sarkar, Linda Elmhadhbi, Mohamed-Hedi Karray, P. Fillatreau, B. Archimède","doi":"10.3233/sw-233460","DOIUrl":null,"url":null,"abstract":"Thanks to the advent of robotics in shopfloor and warehouse environments, control rooms need to seamlessly exchange information regarding the dynamically changing 3D environment to facilitate tasks and path planning for the robots. Adding to the complexity, this type of environment is heterogeneous as it includes both free space and various types of rigid bodies (equipment, materials, humans etc.). At the same time, 3D environment-related information is also required by the virtual applications (e.g., VR techniques) for the behavioral study of CAD-based product models or simulation of CNC operations. In past research, information models for such heterogeneous 3D environments are often built without ensuring connection among different levels of abstractions required for different applications. For addressing such multiple points of view and modelling requirements for 3D objects and environments, this paper proposes an ontology model that integrates the contextual, topologic, and geometric information of both the rigid bodies and the free space. The ontology provides an evolvable knowledge model that can support simulated task-related information in general. This ontology aims to greatly improve interoperability as a path planning system (e.g., robot) and will be able to deal with different applications by simply updating the contextual semantics related to some targeted application while keeping the geometric and topological models intact by leveraging the semantic link among the models.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-233460","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Thanks to the advent of robotics in shopfloor and warehouse environments, control rooms need to seamlessly exchange information regarding the dynamically changing 3D environment to facilitate tasks and path planning for the robots. Adding to the complexity, this type of environment is heterogeneous as it includes both free space and various types of rigid bodies (equipment, materials, humans etc.). At the same time, 3D environment-related information is also required by the virtual applications (e.g., VR techniques) for the behavioral study of CAD-based product models or simulation of CNC operations. In past research, information models for such heterogeneous 3D environments are often built without ensuring connection among different levels of abstractions required for different applications. For addressing such multiple points of view and modelling requirements for 3D objects and environments, this paper proposes an ontology model that integrates the contextual, topologic, and geometric information of both the rigid bodies and the free space. The ontology provides an evolvable knowledge model that can support simulated task-related information in general. This ontology aims to greatly improve interoperability as a path planning system (e.g., robot) and will be able to deal with different applications by simply updating the contextual semantics related to some targeted application while keeping the geometric and topological models intact by leveraging the semantic link among the models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟操作任务所在的三维环境本体(ENVON)
由于机器人技术在车间和仓库环境中的应用,控制室需要无缝交换有关动态变化的 3D 环境的信息,以方便机器人执行任务和规划路径。由于这类环境既包括自由空间,也包括各种类型的刚体(设备、材料、人体等),因此更加复杂。同时,虚拟应用(如 VR 技术)在对基于 CAD 的产品模型进行行为研究或对数控操作进行仿真时,也需要与 3D 环境相关的信息。在过去的研究中,为这种异构三维环境建立的信息模型通常无法确保不同应用所需的不同抽象层次之间的联系。为满足三维物体和环境的多视角和建模要求,本文提出了一种本体模型,它集成了刚体和自由空间的上下文、拓扑和几何信息。本体提供了一个可演化的知识模型,可支持模拟任务相关的一般信息。本体旨在大大提高路径规划系统(如机器人)的互操作性,只需更新与某些目标应用相关的上下文语义,就能处理不同的应用,同时利用模型之间的语义联系,保持几何和拓扑模型的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Semantic Web
Semantic Web COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍: The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.
期刊最新文献
Using Wikidata lexemes and items to generate text from abstract representations Editorial: Special issue on Interactive Semantic Web Empowering the SDM-RDFizer tool for scaling up to complex knowledge graph creation pipelines1 Special Issue on Semantic Web for Industrial Engineering: Research and Applications Declarative generation of RDF-star graphs from heterogeneous data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1