Power Density Distributions in Electron Beams

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Welding Journal Pub Date : 2023-10-01 DOI:10.29391/2023.102.019
JOHN W. ELMER, ALAN T. TERUYA, GORDON GIBBS
{"title":"Power Density Distributions in Electron Beams","authors":"JOHN W. ELMER, ALAN T. TERUYA, GORDON GIBBS","doi":"10.29391/2023.102.019","DOIUrl":null,"url":null,"abstract":"Measuring and controlling the power density distribution of electron beams used for welding is critical for producing repeatable welds and for transferring welding parameters between different machines. On any given machine, the power density distribution is controlled by defocusing the beam relative to its sharpest focused condition. However, measuring the power density distribution can be difficult due to the intense nature of welding beams and is further complicated by imperfect electron optics that can distort the beam, making it difficult to quantify. The enhanced modified Faraday cup (EMFC) diagnostic method was used here for beam analysis that utilizes computed tomography to reconstruct the beam’s power density distribution. These results were compared to the International Standards Organization (ISO) method for characterizing laser beams using a second-moment D4σ calculation. For ideal Gaussian-shaped beams, both methods would give the same result. However, for imperfect beams, the calculated D4σ diameter was shown to be about 25% larger relative to the FWe2 diameter measured by the EMFC due to the heavier weighting of data in the tails of the beam by D4σ. Although both methods produce repeatable welds, it is important to understand the differences in the reported beam diameters, divergence angles, and beam parameter products when transferring parameters between machines.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29391/2023.102.019","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

Measuring and controlling the power density distribution of electron beams used for welding is critical for producing repeatable welds and for transferring welding parameters between different machines. On any given machine, the power density distribution is controlled by defocusing the beam relative to its sharpest focused condition. However, measuring the power density distribution can be difficult due to the intense nature of welding beams and is further complicated by imperfect electron optics that can distort the beam, making it difficult to quantify. The enhanced modified Faraday cup (EMFC) diagnostic method was used here for beam analysis that utilizes computed tomography to reconstruct the beam’s power density distribution. These results were compared to the International Standards Organization (ISO) method for characterizing laser beams using a second-moment D4σ calculation. For ideal Gaussian-shaped beams, both methods would give the same result. However, for imperfect beams, the calculated D4σ diameter was shown to be about 25% larger relative to the FWe2 diameter measured by the EMFC due to the heavier weighting of data in the tails of the beam by D4σ. Although both methods produce repeatable welds, it is important to understand the differences in the reported beam diameters, divergence angles, and beam parameter products when transferring parameters between machines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子束中的功率密度分布
测量和控制用于焊接的电子束的功率密度分布对于产生可重复焊接和在不同机器之间传递焊接参数至关重要。在任何给定的机器上,功率密度分布是通过光束相对于其最锐利聚焦条件的散焦来控制的。然而,由于焊接光束的强烈性质,测量功率密度分布可能很困难,并且由于不完美的电子光学器件会使光束扭曲,使其难以量化,从而进一步复杂化。本文使用增强改良法拉第杯(EMFC)诊断方法进行光束分析,利用计算机断层扫描重建光束的功率密度分布。这些结果与国际标准组织(ISO)使用二阶矩D4σ计算表征激光束的方法进行了比较。对于理想的高斯形光束,两种方法都会得到相同的结果。然而,对于不完全光束,计算得到的D4σ直径比EMFC测量到的FWe2直径大25%左右,这是由于光束尾部数据的D4σ权重更大。虽然这两种方法都能产生可重复的焊缝,但在机器之间传递参数时,了解所报告的光束直径、发散角和光束参数产品的差异是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
期刊最新文献
SiO2-bearing Fluxes Induced Evolution of γ Columnar Grain Size Prediction of Ultrasonic Welding Parameters for Polymer Joining Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 1 — Microstructure A State-of-the-Art Review on Direct Welding of Polymer to Metal for Structural Applications: Part 1 — Promising Processes Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 2 — Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1