Intelligent Prediction of FSW Physical Quantity and Joint Mechanical Properties

IF 2.2 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Welding Journal Pub Date : 2024-01-01 DOI:10.29391/2024.103.002
Xiaohong Lu, Fanmao Zeng, Y. Luan, X. Meng
{"title":"Intelligent Prediction of FSW Physical Quantity and Joint Mechanical Properties","authors":"Xiaohong Lu, Fanmao Zeng, Y. Luan, X. Meng","doi":"10.29391/2024.103.002","DOIUrl":null,"url":null,"abstract":"Friction stir welding (FSW) process parameters influence welding temperature field and axial force, which affect welding strength. At present, how the FSW process parameters of aluminum alloy 2219-T8 thick plates influence process physical quantity and how the process physical quantity changes the tensile strength about the welded joint are unknown. We focus on the intelligent prediction of FSW temperature, axial force, and mechanical properties, to provide a basis for FSW process control of aluminum alloy 2219-T8 thick plate. Firstly, we conducted the FSW experiment of aluminum alloy 2219-T8 thick plate. Then, we input the welding process parameters, set up a prediction model by particle swarm optimization-back propagation (PSO-BP) neural network to predict the peak temperature and axial force. Finally, we input the peak temperature and axial force, use genetic algorithm-back propagation (GA-BP) neural network to establish a weld tensile strength estimation model, and comply with the prediction of tensile strength.","PeriodicalId":23681,"journal":{"name":"Welding Journal","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.29391/2024.103.002","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Friction stir welding (FSW) process parameters influence welding temperature field and axial force, which affect welding strength. At present, how the FSW process parameters of aluminum alloy 2219-T8 thick plates influence process physical quantity and how the process physical quantity changes the tensile strength about the welded joint are unknown. We focus on the intelligent prediction of FSW temperature, axial force, and mechanical properties, to provide a basis for FSW process control of aluminum alloy 2219-T8 thick plate. Firstly, we conducted the FSW experiment of aluminum alloy 2219-T8 thick plate. Then, we input the welding process parameters, set up a prediction model by particle swarm optimization-back propagation (PSO-BP) neural network to predict the peak temperature and axial force. Finally, we input the peak temperature and axial force, use genetic algorithm-back propagation (GA-BP) neural network to establish a weld tensile strength estimation model, and comply with the prediction of tensile strength.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FSW 物理量和接头机械性能的智能预测
搅拌摩擦焊(FSW)工艺参数影响焊接温度场和轴向力,进而影响焊接强度。目前,铝合金 2219-T8 厚板的 FSW 工艺参数如何影响工艺物理量以及工艺物理量如何改变焊接接头的抗拉强度尚不清楚。我们重点研究了FSW温度、轴向力和力学性能的智能预测,为铝合金2219-T8厚板的FSW工艺控制提供依据。首先,我们进行了铝合金 2219-T8 厚板的 FSW 试验。然后,输入焊接工艺参数,利用粒子群优化-反向传播(PSO-BP)神经网络建立预测模型,预测峰值温度和轴向力。最后,我们输入峰值温度和轴向力,利用遗传算法-反向传播(GA-BP)神经网络建立焊接抗拉强度估算模型,并符合抗拉强度的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Welding Journal
Welding Journal 工程技术-冶金工程
CiteScore
3.00
自引率
0.00%
发文量
23
审稿时长
3 months
期刊介绍: The Welding Journal has been published continually since 1922 — an unmatched link to all issues and advancements concerning metal fabrication and construction. Each month the Welding Journal delivers news of the welding and metal fabricating industry. Stay informed on the latest products, trends, technology and events via in-depth articles, full-color photos and illustrations, and timely, cost-saving advice. Also featured are articles and supplements on related activities, such as testing and inspection, maintenance and repair, design, training, personal safety, and brazing and soldering.
期刊最新文献
SiO2-bearing Fluxes Induced Evolution of γ Columnar Grain Size Prediction of Ultrasonic Welding Parameters for Polymer Joining Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 1 — Microstructure A State-of-the-Art Review on Direct Welding of Polymer to Metal for Structural Applications: Part 1 — Promising Processes Effect of Wire Preheat and Feed Rate in X80 Steel Laser Root Welds: Part 2 — Mechanical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1