Numerical simulation for the determination of the radiative properties of spherical packed bed porous media: A COMSOL Multiphysics Study

IF 1.9 4区 工程技术 Q3 ENGINEERING, MECHANICAL Advances in Mechanical Engineering Pub Date : 2023-10-01 DOI:10.1177/16878132231205724
Chaima Bouraoui, Fayçal Ben Nejma
{"title":"Numerical simulation for the determination of the radiative properties of spherical packed bed porous media: A COMSOL Multiphysics Study","authors":"Chaima Bouraoui, Fayçal Ben Nejma","doi":"10.1177/16878132231205724","DOIUrl":null,"url":null,"abstract":"The determination of the radiative properties of porous media has become a critical issue in various industrial and engineering applications. The aim of this paper is to characterize the radiative heat transfer process through porous media, assumed to be spherical packed beds. A prediction model was developed using the software COMSOL Multiphysics to simulate the interaction of each of the three proposed structures with a plane-heating surface. The distribution of normalized fluxes was assessed allowing the computation of effective radiative properties, namely the transmissivity, reflectivity, and absorptivity for diffusely and specularly reflecting particles. The results show that the arrangement of the particles has a noticeable influence on the media properties. Two layers of the third model were enough to obtain an opaque surface. Correlations have been developed to allow effective reflectivity, transmissivity, and absorptivity coefficients to be easily and accurately defined as a function of emissivity in future models. The suitability of the proposed models was discussed through a comparative study of the results found using numerical simulations with analytical calculations, with a good agreement obtained.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231205724","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The determination of the radiative properties of porous media has become a critical issue in various industrial and engineering applications. The aim of this paper is to characterize the radiative heat transfer process through porous media, assumed to be spherical packed beds. A prediction model was developed using the software COMSOL Multiphysics to simulate the interaction of each of the three proposed structures with a plane-heating surface. The distribution of normalized fluxes was assessed allowing the computation of effective radiative properties, namely the transmissivity, reflectivity, and absorptivity for diffusely and specularly reflecting particles. The results show that the arrangement of the particles has a noticeable influence on the media properties. Two layers of the third model were enough to obtain an opaque surface. Correlations have been developed to allow effective reflectivity, transmissivity, and absorptivity coefficients to be easily and accurately defined as a function of emissivity in future models. The suitability of the proposed models was discussed through a comparative study of the results found using numerical simulations with analytical calculations, with a good agreement obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球形充填床多孔介质辐射特性的数值模拟:COMSOL多物理场研究
多孔介质辐射特性的测定已成为各种工业和工程应用中的关键问题。本文的目的是表征通过多孔介质的辐射传热过程,假设是球形填充床。利用COMSOL Multiphysics软件建立了一个预测模型,模拟了三种结构与平面加热表面的相互作用。对归一化通量的分布进行了评估,从而可以计算有效的辐射特性,即漫反射和镜面反射粒子的透射率、反射率和吸收率。结果表明,颗粒的排列对介质性能有明显的影响。第三个模型的两层足以获得一个不透明的表面。相关关系已经发展到允许有效反射率、透过率和吸收率系数在未来的模式中作为发射率的函数被容易和准确地定义。通过数值模拟结果与解析计算结果的比较,讨论了所提出模型的适用性,得到了很好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering 工程技术-机械工程
CiteScore
3.60
自引率
4.80%
发文量
353
审稿时长
6-12 weeks
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
期刊最新文献
Active suspension and steering system control of emergency rescue vehicle based on sliding mode dual robust coordination control Deterministic and stochastic model predictive energy management of hybrid electric vehicles using two improved speed predictors Multi-verse optimizer for thermal error modeling approach of spindle system based on thermal image Research on the operation and quality control of small rock hole shotcrete robot Research on cutting lubrication performance of textured tools considering slip boundary conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1