GAGAN: Global Attention Generative Adversarial Networks for Semiconductor Advanced Process Control

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Semiconductor Manufacturing Pub Date : 2023-11-15 DOI:10.1109/TSM.2023.3332630
Hsiu-Hui Hsiao;Kung-Jeng Wang
{"title":"GAGAN: Global Attention Generative Adversarial Networks for Semiconductor Advanced Process Control","authors":"Hsiu-Hui Hsiao;Kung-Jeng Wang","doi":"10.1109/TSM.2023.3332630","DOIUrl":null,"url":null,"abstract":"This paper addresses the quality control of the photolithography process in the semiconductor industry. Overlay errors in the process seriously affect the wafer yield, and cause the wafer to be forced to rework and affect the production efficiency of the equipment. We examine the current state of its process control, develop a novel overlay predict model, and verify the prediction results. This study proposes a Global Attention Generative Adversarial Networks (GAGAN) model to precisely predict the overlay error for the feed-forward data of the front layer, which is used as the important information and process parameters for the advanced process control of the current layer. Experiment results on a semiconductor shop-floor confirms that our proposed method achieves high predictive performance while maintaining extensibility and visual quality.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"115-123"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10318212/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the quality control of the photolithography process in the semiconductor industry. Overlay errors in the process seriously affect the wafer yield, and cause the wafer to be forced to rework and affect the production efficiency of the equipment. We examine the current state of its process control, develop a novel overlay predict model, and verify the prediction results. This study proposes a Global Attention Generative Adversarial Networks (GAGAN) model to precisely predict the overlay error for the feed-forward data of the front layer, which is used as the important information and process parameters for the advanced process control of the current layer. Experiment results on a semiconductor shop-floor confirms that our proposed method achieves high predictive performance while maintaining extensibility and visual quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GAGAN:用于半导体先进过程控制的全局注意力生成对抗网络
本文论述半导体工业中光刻工艺的质量控制。工艺中的叠层误差严重影响晶圆良品率,导致晶圆被迫返工,影响设备的生产效率。我们研究了其工艺控制的现状,开发了一种新型叠加预测模型,并验证了预测结果。本研究提出了一种全局注意力生成对抗网络(GAGAN)模型,用于精确预测前层前馈数据的叠加误差,并将其作为当前层高级过程控制的重要信息和过程参数。在半导体车间的实验结果证实,我们提出的方法在保持可扩展性和视觉质量的同时,实现了较高的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
期刊最新文献
Overlay Measurement Algorithm for Moirè Targets Using Frequency Analysis Performance Evaluation of Supervised Learning Model Based on Functional Data Analysis and Summary Statistics Machine Learning Based Universal Threshold Voltage Extraction of Transistors Using Convolutional Neural Networks A Novel Multi-Modal Learning Approach for Cross-Process Defect Classification in TFT-LCD Array Manufacturing Feature Extraction From Diffraction Images Using a Spatial Light Modulator in Scatterometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1