Biological activities of nitromethylene analogues of imidacloprid with a 4,5-dimethylated imidazolidine ring

IF 1.5 4区 农林科学 Q2 ENTOMOLOGY Journal of Pesticide Science Pub Date : 2023-01-01 DOI:10.1584/jpestics.d23-024
Madoka Yamamura, Satoshi Yamauchi, Hisashi Nishiwaki
{"title":"Biological activities of nitromethylene analogues of imidacloprid with a 4,5-dimethylated imidazolidine ring","authors":"Madoka Yamamura, Satoshi Yamauchi, Hisashi Nishiwaki","doi":"10.1584/jpestics.d23-024","DOIUrl":null,"url":null,"abstract":"Four nitromethylene analogues of imidacloprid (CH-IMIs) having a 4,5-dimethylated (diMe) imidazolidine ring were stereospecifically synthesized to evaluate their affinity for the nicotinic acetylcholine receptors of the housefly Musca domestica. Among the analogues, the 4S,5R-diMe analogue showed the highest receptor affinity (Ki=0.39 nM). The insecticidal activity against M. domestica of the synthesized compounds was also measured under synergistic and nonsynergistic conditions. Under nonsynergistic conditions, the insecticidal activity of the 4S,5R-diMe analogue was the highest. The order of the insecticidal potency of the four diMe-CH-IMIs (4S,5R->4R,5S-=4R,5R->4S,5S-diMe analogues) was the same as that of the receptor affinity. Piperonyl butoxide (PBO) did not synergize with the test compounds, but both PBO and NIA16388 applications strengthened the activity of analogues other than the 4S,5S-diMe analogue. This suggests that the configuration of the substituents on the imidazolidine ring should influence the metabolism process of CH-IMI in houseflies.","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"34 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pesticide Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1584/jpestics.d23-024","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Four nitromethylene analogues of imidacloprid (CH-IMIs) having a 4,5-dimethylated (diMe) imidazolidine ring were stereospecifically synthesized to evaluate their affinity for the nicotinic acetylcholine receptors of the housefly Musca domestica. Among the analogues, the 4S,5R-diMe analogue showed the highest receptor affinity (Ki=0.39 nM). The insecticidal activity against M. domestica of the synthesized compounds was also measured under synergistic and nonsynergistic conditions. Under nonsynergistic conditions, the insecticidal activity of the 4S,5R-diMe analogue was the highest. The order of the insecticidal potency of the four diMe-CH-IMIs (4S,5R->4R,5S-=4R,5R->4S,5S-diMe analogues) was the same as that of the receptor affinity. Piperonyl butoxide (PBO) did not synergize with the test compounds, but both PBO and NIA16388 applications strengthened the activity of analogues other than the 4S,5S-diMe analogue. This suggests that the configuration of the substituents on the imidazolidine ring should influence the metabolism process of CH-IMI in houseflies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有4,5-二甲基化咪唑烷环的咪氯啉亚甲基类似物的生物活性
立体定向合成了4个具有4,5-二甲基化(diMe)咪唑烷环的吡虫啉(CH-IMIs)亚甲基类似物,以评价它们对家蝇烟碱乙酰胆碱受体的亲和力。其中,4S,5R-diMe类似物的受体亲和力最高(Ki=0.39 nM)。测定了合成化合物在协同和非协同条件下对家蝇的杀虫活性。在非增效条件下,4S,5R-diMe类似物的杀虫活性最高。4个diMe-CH-IMIs的杀虫效价顺序为4S、5R->4R、5S-=4R、5R->4S、5S- dime类似物)与受体亲和力顺序相同。胡椒酰丁醇(PBO)与实验化合物没有协同作用,但PBO和NIA16388的应用都增强了除4S,5S-diMe类似物外的类似物的活性。这表明咪唑烷环上取代基的构型可能影响家蝇CH-IMI的代谢过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pesticide Science
Journal of Pesticide Science 农林科学-昆虫学
CiteScore
4.30
自引率
4.20%
发文量
28
审稿时长
18-36 weeks
期刊介绍: The Journal of Pesticide Science publishes the results of original research regarding the chemistry and biochemistry of pesticides including bio-based materials. It also covers their metabolism, toxicology, environmental fate and formulation.
期刊最新文献
Effect of pyriofenone on the infection processes and cytological features of Blumeria graminis on wheat leaves Synthesis and biological evaluation of burnettiene A derivatives enabling discovery of novel fungicide candidates. Enhanced disease resistance against Botrytis cinerea by strigolactone-mediated immune priming in Arabidopsis thaliana A reliable quantification of organophosphorus pesticides in brown rice samples for proficiency testing using Japanese official analytical method, QuEChERS, and modified QuEChERS combined with isotope dilution mass spectrometry Bacterial Pesticides: Mechanism of Action, Possibility of Food Contamination, and Residue Analysis Using MS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1