A capacitor-coupled stacked-based sense amplifier with enhanced offset tolerance for low power SRAM

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Ieice Electronics Express Pub Date : 2023-01-01 DOI:10.1587/elex.20.20230484
Pengyuan Zhao, Huidong Zhao, Jialu Yin, Zhi Li, Shushan Qiao
{"title":"A capacitor-coupled stacked-based sense amplifier with enhanced offset tolerance for low power SRAM","authors":"Pengyuan Zhao, Huidong Zhao, Jialu Yin, Zhi Li, Shushan Qiao","doi":"10.1587/elex.20.20230484","DOIUrl":null,"url":null,"abstract":"A capacitor-coupled stacked-based sense amplifier (CC-STSA) is proposed to compensate the input-referred offset voltage (VOS), which dictates the minimum required bitline swing for a reliable read operation of static random access memory (SRAM). The data-aware coupled capacitors are employed to dynamically tune the driving ability of sensing transistors according to the data supposed to be read, thus improving the offset tolerance of sense amplifier (SA). Compared with the conventional current latch-type SA (CLSA), the simulation results in 55-nm CMOS technology show that the proposed scheme achieves more than 4.17X of the standard deviation of VOS (σOS) reduction across the range of supply voltage from 0.6V to 1.2V and reduce the read energy consumption and read delay to 54.9% and 45.5% respectively. Furthermore, the proposed scheme reduces the σOS by 2.19X compared to DIBBSA on average.","PeriodicalId":50387,"journal":{"name":"Ieice Electronics Express","volume":"39 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Electronics Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/elex.20.20230484","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A capacitor-coupled stacked-based sense amplifier (CC-STSA) is proposed to compensate the input-referred offset voltage (VOS), which dictates the minimum required bitline swing for a reliable read operation of static random access memory (SRAM). The data-aware coupled capacitors are employed to dynamically tune the driving ability of sensing transistors according to the data supposed to be read, thus improving the offset tolerance of sense amplifier (SA). Compared with the conventional current latch-type SA (CLSA), the simulation results in 55-nm CMOS technology show that the proposed scheme achieves more than 4.17X of the standard deviation of VOS (σOS) reduction across the range of supply voltage from 0.6V to 1.2V and reduce the read energy consumption and read delay to 54.9% and 45.5% respectively. Furthermore, the proposed scheme reduces the σOS by 2.19X compared to DIBBSA on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于低功率SRAM的具有增强偏移容限的电容耦合堆叠感测放大器
提出了一种电容耦合的基于堆叠的感测放大器(CC-STSA)来补偿输入参考偏置电压(VOS), VOS决定了静态随机存储器(SRAM)可靠读取操作所需的最小位线摆幅。采用数据感知耦合电容根据需要读取的数据动态调整传感晶体管的驱动能力,从而提高了传感放大器的偏置容限。与传统的电流锁存型SA (CLSA)相比,在55纳米CMOS技术下的仿真结果表明,该方案在电源电压0.6 ~ 1.2V范围内,将VOS (σOS)的标准差降低了4.17倍以上,读取能耗和读取延迟分别降低到54.9%和45.5%。此外,与DIBBSA相比,该方案平均降低了2.19倍的σOS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ieice Electronics Express
Ieice Electronics Express 工程技术-工程:电子与电气
CiteScore
1.50
自引率
37.50%
发文量
119
审稿时长
1.1 months
期刊介绍: An aim of ELEX is rapid publication of original, peer-reviewed short papers that treat the field of modern electronics and electrical engineering. The boundaries of acceptable fields are not strictly delimited and they are flexibly varied to reflect trends of the fields. The scope of ELEX has mainly been focused on device and circuit technologies. Current appropriate topics include: - Integrated optoelectronics (lasers and optoelectronic devices, silicon photonics, planar lightwave circuits, polymer optical circuits, etc.) - Optical hardware (fiber optics, microwave photonics, optical interconnects, photonic signal processing, photonic integration and modules, optical sensing, etc.) - Electromagnetic theory - Microwave and millimeter-wave devices, circuits, and modules - THz devices, circuits and modules - Electron devices, circuits and modules (silicon, compound semiconductor, organic and novel materials) - Integrated circuits (memory, logic, analog, RF, sensor) - Power devices and circuits - Micro- or nano-electromechanical systems - Circuits and modules for storage - Superconducting electronics - Energy harvesting devices, circuits and modules - Circuits and modules for electronic displays - Circuits and modules for electronic instrumentation - Devices, circuits and modules for IoT and biomedical applications
期刊最新文献
Erratum:Antenna in package design and measurement for millimeter-wave applications in fan-out wafer-level package [IEICE Electronics Express Vol. 19 (2022) No. 14 pp. 20220122] A Broadband Reconfigurable Frequency-Selective Surface in Terahertz Band Based on Different Metal-Insulator Transition Temperature of VO<sub>2</sub> A Current Fed Full Bridge Converter with Auxiliary Resonant Capacitor Battery health state estimation method based on data feature mining A Highly Stable XOR APUF Based on Deviation Signal Screening Mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1