EviewsR: An R Package for Dynamic and Reproducible Research Using EViews, R, R Markdown and Quarto

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS R Journal Pub Date : 2023-11-01 DOI:10.32614/rj-2023-045
Sagiru Mati, Irfan Civcir, S. I. Abba
{"title":"EviewsR: An R Package for Dynamic and Reproducible Research Using EViews, R, R Markdown and Quarto","authors":"Sagiru Mati, Irfan Civcir, S. I. Abba","doi":"10.32614/rj-2023-045","DOIUrl":null,"url":null,"abstract":"EViews is a software designed for conducting econometric data analysis. There exists a one-way communication between EViews and R, as the former can run the code of the latter, but the reverse is not the case. We describe [EviewsR](https://CRAN.R-project.org/package=EviewsR), an R package which allows users of R, R Markdown and Quarto to execute EViews code. In essence, [EviewsR](https://CRAN.R-project.org/package=EviewsR) does not only provide functions for base R, but also adds EViews to the existing [knitr](https://CRAN.R-project.org/package=knitr)'s knit-engines. We also show how EViews equation, graph, series, and table objects can be imported and customised dynamically and reproducibly in R, R Markdown and Quarto document. Therefore, [EviewsR](https://CRAN.R-project.org/package=EviewsR) seeks to improve the accuracy, transparency and reproducibility of research conducted with EViews and R.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"103 5-6","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-045","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

EViews is a software designed for conducting econometric data analysis. There exists a one-way communication between EViews and R, as the former can run the code of the latter, but the reverse is not the case. We describe [EviewsR](https://CRAN.R-project.org/package=EviewsR), an R package which allows users of R, R Markdown and Quarto to execute EViews code. In essence, [EviewsR](https://CRAN.R-project.org/package=EviewsR) does not only provide functions for base R, but also adds EViews to the existing [knitr](https://CRAN.R-project.org/package=knitr)'s knit-engines. We also show how EViews equation, graph, series, and table objects can be imported and customised dynamically and reproducibly in R, R Markdown and Quarto document. Therefore, [EviewsR](https://CRAN.R-project.org/package=EviewsR) seeks to improve the accuracy, transparency and reproducibility of research conducted with EViews and R.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EviewsR:一个使用EViews, R, R Markdown和Quarto进行动态和可重复研究的R包
EViews是一款用于进行计量经济数据分析的软件。EViews和R之间存在单向通信,因为前者可以运行后者的代码,但反之则不然。我们描述了[EviewsR](https://CRAN.R-project.org/package=EviewsR),它是一个R包,允许R、R Markdown和Quarto的用户执行EViews代码。从本质上讲,[EviewsR](https://CRAN.R-project.org/package=EviewsR)不仅为base R提供了函数,而且还将EViews添加到现有的[knitr](https://CRAN.R-project.org/package=knitr)'s knits -engines)中。我们还展示了如何在R、R Markdown和Quarto文档中动态地导入和自定义EViews方程、图形、序列和表对象。因此,[EviewsR](https://CRAN.R-project.org/package=EviewsR)旨在提高使用EViews和R进行的研究的准确性、透明度和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
期刊最新文献
binGroup2: Statistical Tools for Infection Identification via Group Testing. glmmPen: High Dimensional Penalized Generalized Linear Mixed Models. Three-Way Correspondence Analysis in R nlstac: Non-Gradient Separable Nonlinear Least Squares Fitting A Workflow for Estimating and Visualising Excess Mortality During the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1