An insider user authentication method based on improved temporal convolutional network

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2023-11-13 DOI:10.1016/j.hcc.2023.100169
Xiaoling Tao, Yuelin Yu, Lianyou Fu, Jianxiang Liu, Yunhao Zhang
{"title":"An insider user authentication method based on improved temporal convolutional network","authors":"Xiaoling Tao,&nbsp;Yuelin Yu,&nbsp;Lianyou Fu,&nbsp;Jianxiang Liu,&nbsp;Yunhao Zhang","doi":"10.1016/j.hcc.2023.100169","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of information technology, information system security and insider threat detection have become important topics for organizational management. In the current network environment, user behavioral bio-data presents the characteristics of nonlinearity and temporal sequence. Most of the existing research on authentication based on user behavioral biometrics adopts the method of manual feature extraction. They do not adequately capture the nonlinear and time-sequential dependencies of behavioral bio-data, and also do not adequately reflect the personalized usage characteristics of users, leading to bottlenecks in the performance of the authentication algorithm. In order to solve the above problems, this paper proposes a Temporal Convolutional Network method based on an Efficient Channel Attention mechanism (ECA-TCN) to extract user mouse dynamics features and constructs an one-class Support Vector Machine (OCSVM) for each user for authentication. Experimental results show that compared with four existing deep learning algorithms, the method retains more adequate key information and improves the classification performance of the neural network. In the final authentication, the Area Under the Curve (AUC) can reach 96%.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"3 4","pages":"Article 100169"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667295223000673/pdfft?md5=e3a2018fd567973462b834311553fa94&pid=1-s2.0-S2667295223000673-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295223000673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of information technology, information system security and insider threat detection have become important topics for organizational management. In the current network environment, user behavioral bio-data presents the characteristics of nonlinearity and temporal sequence. Most of the existing research on authentication based on user behavioral biometrics adopts the method of manual feature extraction. They do not adequately capture the nonlinear and time-sequential dependencies of behavioral bio-data, and also do not adequately reflect the personalized usage characteristics of users, leading to bottlenecks in the performance of the authentication algorithm. In order to solve the above problems, this paper proposes a Temporal Convolutional Network method based on an Efficient Channel Attention mechanism (ECA-TCN) to extract user mouse dynamics features and constructs an one-class Support Vector Machine (OCSVM) for each user for authentication. Experimental results show that compared with four existing deep learning algorithms, the method retains more adequate key information and improves the classification performance of the neural network. In the final authentication, the Area Under the Curve (AUC) can reach 96%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于改进时间卷积网络的内部用户认证方法
随着信息技术的飞速发展,信息系统安全和内部威胁检测已成为组织管理的重要课题。在当前的网络环境下,用户行为生物数据呈现出非线性和时序性的特点。现有的基于用户行为生物识别的身份认证研究大多采用人工特征提取的方法。它们不能充分捕捉行为生物数据的非线性和时间顺序依赖性,也不能充分反映用户的个性化使用特征,从而导致认证算法的性能瓶颈。为了解决上述问题,本文提出了一种基于高效通道注意机制(ECA-TCN)的时间卷积网络方法,提取用户鼠标动态特征,并为每个用户构建一个单类支持向量机(OCSVM)进行认证。实验结果表明,与现有的四种深度学习算法相比,该方法保留了更充分的关键信息,提高了神经网络的分类性能。最终认证时,曲线下面积(Area Under the Curve, AUC)可达96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Exploring Personalized Internet of Things (PIoT), social connectivity, and Artificial Social Intelligence (ASI): A survey” [High-Confidence Computing 4 (2024) 100242] Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] A lightweight practical consensus mechanism for supply chain blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1