Malware detection system based on static and dynamic analysis and using machine learning

Alan Nafiiev, Andrii Rodionov
{"title":"Malware detection system based on static and dynamic analysis and using machine learning","authors":"Alan Nafiiev, Andrii Rodionov","doi":"10.20535/tacs.2664-29132023.2.277959","DOIUrl":null,"url":null,"abstract":"
 Cyber wars and cyber attacks are an urgent problem in the global digital environment. Based on existing popular detection methods, malware authors are creating ever more advanced and sophisticated malware. Therefore, this study aims to create a malware analysis system that uses both dynamic and static analysis. Our system is based on a machine learning method - support vector machine. The set of data used was collected from various Internet sources. It consists of 257 executable files in .exe format, 178 of which are malicious and 79 are benign. We use 5 different types of data representation: binary information, trace instructions, control flow graph, information obtained from the dynamic operation of the file, and file metadata. Then, using multiple kernel learning, we combine all data views and create one summative machine learning model.
","PeriodicalId":471817,"journal":{"name":"Theoretical and applied cybersecurity","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and applied cybersecurity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/tacs.2664-29132023.2.277959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cyber wars and cyber attacks are an urgent problem in the global digital environment. Based on existing popular detection methods, malware authors are creating ever more advanced and sophisticated malware. Therefore, this study aims to create a malware analysis system that uses both dynamic and static analysis. Our system is based on a machine learning method - support vector machine. The set of data used was collected from various Internet sources. It consists of 257 executable files in .exe format, 178 of which are malicious and 79 are benign. We use 5 different types of data representation: binary information, trace instructions, control flow graph, information obtained from the dynamic operation of the file, and file metadata. Then, using multiple kernel learning, we combine all data views and create one summative machine learning model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
恶意软件检测系统基于静态和动态分析,并利用机器学习
& # x0D;网络战争和网络攻击是全球数字环境中亟待解决的问题。基于现有流行的检测方法,恶意软件作者正在创建更先进和复杂的恶意软件。因此,本研究旨在创建一个同时使用动态和静态分析的恶意软件分析系统。我们的系统是基于一种机器学习方法——支持向量机。所使用的数据集是从各种互联网来源收集的。它由257个。exe格式的可执行文件组成,其中178个是恶意文件,79个是良性文件。我们使用5种不同类型的数据表示:二进制信息、跟踪指令、控制流图、从文件动态操作中获得的信息和文件元数据。然后,使用多核学习,我们将所有数据视图组合起来,创建一个总结性机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Malware detection system based on static and dynamic analysis and using machine learning Cryptanalysis of the «Vershyna» digital signature algorithm The Development of the Solution Search Method Based on the Improved Bee Colony Algorithm Complexity of The Systems of Linear Restrictions over a Finite Field Vulnerability classification using Q-analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1