Constructing the Bounds for Neural Network Training Using Grammatical Evolution

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers Pub Date : 2023-11-05 DOI:10.3390/computers12110226
Ioannis G. Tsoulos, Alexandros Tzallas, Evangelos Karvounis
{"title":"Constructing the Bounds for Neural Network Training Using Grammatical Evolution","authors":"Ioannis G. Tsoulos, Alexandros Tzallas, Evangelos Karvounis","doi":"10.3390/computers12110226","DOIUrl":null,"url":null,"abstract":"Artificial neural networks are widely established models of computational intelligence that have been tested for their effectiveness in a variety of real-world applications. These models require a set of parameters to be fitted through the use of an optimization technique. However, an issue that researchers often face is finding an efficient range of values for the parameters of the artificial neural network. This paper proposes an innovative technique for generating a promising range of values for the parameters of the artificial neural network. Finding the value field is conducted by a series of rules for partitioning the original set of values or expanding it, the rules of which are generated using grammatical evolution. After finding a promising interval of values, any optimization technique such as a genetic algorithm can be used to train the artificial neural network on that interval of values. The new technique was tested on a wide range of problems from the relevant literature and the results were extremely promising.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"47 5","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12110226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks are widely established models of computational intelligence that have been tested for their effectiveness in a variety of real-world applications. These models require a set of parameters to be fitted through the use of an optimization technique. However, an issue that researchers often face is finding an efficient range of values for the parameters of the artificial neural network. This paper proposes an innovative technique for generating a promising range of values for the parameters of the artificial neural network. Finding the value field is conducted by a series of rules for partitioning the original set of values or expanding it, the rules of which are generated using grammatical evolution. After finding a promising interval of values, any optimization technique such as a genetic algorithm can be used to train the artificial neural network on that interval of values. The new technique was tested on a wide range of problems from the relevant literature and the results were extremely promising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用语法进化构造神经网络训练的边界
人工神经网络是广泛建立的计算智能模型,已经在各种现实世界的应用中测试了它们的有效性。这些模型需要通过使用优化技术来拟合一组参数。然而,研究人员经常面临的一个问题是如何为人工神经网络的参数找到一个有效的取值范围。本文提出了一种为人工神经网络的参数生成有希望的取值范围的创新技术。查找值字段是通过一系列规则对原始值集进行划分或扩展,这些规则是通过语法演化生成的。在找到一个有希望的值区间后,可以使用任何优化技术(如遗传算法)在该值区间上训练人工神经网络。从相关文献中对新技术进行了广泛的问题测试,结果非常有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
期刊最新文献
Advanced Road Safety: Collective Perception for Probability of Collision Estimation of Connected Vehicles Forecasting of Bitcoin Illiquidity Using High-Dimensional and Textual Features Mining Negative Associations from Medical Databases Considering Frequent, Regular, Closed and Maximal Patterns Faraway, so Close: Perceptions of the Metaverse on the Edge of Madness Blockchain-Powered Gaming: Bridging Entertainment with Serious Game Objectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1