Numerical Homogenization Calculation of Effective Stiffness of Fused Deposition Modeling Printing Carbon Fiber Reinforced Polylactic Acid Composites

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING 3D Printing and Additive Manufacturing Pub Date : 2023-10-19 DOI:10.1089/3dp.2023.0131
Mingju Lei, Yanen Wang, Qinghua Wei, Mingyang Li, Juan Zhang, Yanmei Wang
{"title":"Numerical Homogenization Calculation of Effective Stiffness of Fused Deposition Modeling Printing Carbon Fiber Reinforced Polylactic Acid Composites","authors":"Mingju Lei, Yanen Wang, Qinghua Wei, Mingyang Li, Juan Zhang, Yanmei Wang","doi":"10.1089/3dp.2023.0131","DOIUrl":null,"url":null,"abstract":"The varied material and the inherent complex microstructure make predicting the effective stiffness of fused deposition modeling (FDM) printed polylactic acid (PLA)/carbon fiber (CF) composite a troublesome problem. This article proposes a microstructure scanning electron microscope (SEM) mapping modeling and numerical mean procedure to calculate the effective stiffness of FDM printing PLA/CF laminates. The printed PLA/CF parts were modeled as a continuum of 3D uniform linear elasticity with orthotropic anisotropy, and their elastic behavior was characterized by orthotropic constitutive relations. Micromechanical models of two typical deposition configurations, 0° unidirectional aligned configuration and 0°/90° angle-ply configuration of the printed parts were established based on the periodic representative volume element (RVE) technique. The elastic constants of the RVE models were estimated by volume average method in the finite element stress analysis, and the effects of deposition configurations, CF length, and content on the effective stiffness were also investigated. The results show that the effective stiffness of FDM printing PLA/CF composite is closely related to CF length, content, and the deposition configuration. With the increase of CF length and content, the Young's modulus and shear modulus of printed PLA/CF parts increase, whereas Poisson's ratio decreases. The printed PLA/CF parts with 0° unidirectional aligned configuration exhibits orthotropic characteristics, and the maximum Young's modulus appears along the first axis. The 0°/90° angle-ply FDM PLA/CF composite exhibits transverse isotropic characteristics and the lowest Young's modulus is found along the thickness direction.","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"15 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/3dp.2023.0131","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The varied material and the inherent complex microstructure make predicting the effective stiffness of fused deposition modeling (FDM) printed polylactic acid (PLA)/carbon fiber (CF) composite a troublesome problem. This article proposes a microstructure scanning electron microscope (SEM) mapping modeling and numerical mean procedure to calculate the effective stiffness of FDM printing PLA/CF laminates. The printed PLA/CF parts were modeled as a continuum of 3D uniform linear elasticity with orthotropic anisotropy, and their elastic behavior was characterized by orthotropic constitutive relations. Micromechanical models of two typical deposition configurations, 0° unidirectional aligned configuration and 0°/90° angle-ply configuration of the printed parts were established based on the periodic representative volume element (RVE) technique. The elastic constants of the RVE models were estimated by volume average method in the finite element stress analysis, and the effects of deposition configurations, CF length, and content on the effective stiffness were also investigated. The results show that the effective stiffness of FDM printing PLA/CF composite is closely related to CF length, content, and the deposition configuration. With the increase of CF length and content, the Young's modulus and shear modulus of printed PLA/CF parts increase, whereas Poisson's ratio decreases. The printed PLA/CF parts with 0° unidirectional aligned configuration exhibits orthotropic characteristics, and the maximum Young's modulus appears along the first axis. The 0°/90° angle-ply FDM PLA/CF composite exhibits transverse isotropic characteristics and the lowest Young's modulus is found along the thickness direction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熔融沉积成型打印碳纤维增强聚乳酸复合材料有效刚度的数值均匀化计算
材料的多样性和其固有的复杂微观结构使得熔融沉积建模(FDM)打印聚乳酸/碳纤维复合材料的有效刚度预测成为一个棘手的问题。本文提出了一种微结构扫描电镜(SEM)映射建模和数值平均方法来计算FDM打印PLA/CF层合板的有效刚度。将PLA/CF打印件建模为具有正交各向异性的三维均匀线弹性连续体,其弹性行为采用正交各向异性本构关系表征。基于周期性代表性体积元(RVE)技术,建立了0°单向排列和0°/90°夹角铺层两种典型沉积结构的微观力学模型。在有限元应力分析中,采用体积平均法估算了RVE模型的弹性常数,并研究了沉积形态、CF长度和含量对有效刚度的影响。结果表明:FDM打印PLA/CF复合材料的有效刚度与CF长度、含量和沉积形态密切相关;随着CF长度和含量的增加,PLA/CF打印件的杨氏模量和剪切模量增大,泊松比减小。打印的0°单向排列的PLA/CF零件具有正交异性,最大杨氏模量出现在第一个轴上。0°/90°角层FDM PLA/CF复合材料具有横向各向同性,杨氏模量沿厚度方向最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
期刊最新文献
Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar. Characterizing the Effect of Filament Moisture on Tensile Properties and Morphology of Fused Deposition Modeled Polylactic Acid/Polybutylene Succinate Parts. On the Development of Smart Framework for Printability Maps in Additive Manufacturing of AISI 316L Stainless Steel. Rapid Fabrication of Silica Microlens Arrays via Glass 3D Printing. Simulation of Binder Jetting and Analysis of Magnesium Alloy Bonding Mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1