Fangzhu Xiong, Jie Sun, Penghao Tang, Weiling Guo, Yibo Dong, Zaifa Du, Shiwei Feng, Xuan Li
{"title":"Transfer-free rapid growth of 2-inch wafer-scale patterned graphene as transparent conductive electrodes and heat spreaders for GaN LEDs","authors":"Fangzhu Xiong, Jie Sun, Penghao Tang, Weiling Guo, Yibo Dong, Zaifa Du, Shiwei Feng, Xuan Li","doi":"10.1038/s41699-023-00434-9","DOIUrl":null,"url":null,"abstract":"A technique for the transfer-free growth of 2-inch wafer-scale patterned graphene directly on GaN LED epilayers is introduced. High-quality graphene as transparent electrodes and heat spreaders is synthesized directly on GaN by PECVD at only 600 °C deposition temperature and within 3 min growth time. Co acts as both the catalyst for graphene growth and the dry etching mask for GaN mesas, which greatly improves the efficiency of the semiconductor device process. Elegantly, the graphene growth is in accordance with the shape of Co, which offers a lithography-free patterning technique of the graphene. Afterward, using our penetration etching method through the PMMA and graphene layers, the Co is peacefully removed, and in-situ Ohmic contact is achieved between the graphene and p-GaN where the contact resistivity is only 0.421 Ω cm2. The graphene sheet resistance is as low as 631.2 Ω sq−1. The device is also superior to the counterpart graphene-free LED in terms of heat spreading behavior, as evidenced by the lower junction temperature and thermal resistance. Most importantly, the developed technique produces graphene with excellent performance and is intrinsically more scalable, controllable, and semiconductor industry compatible than traditionally transferred graphene.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.1000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-023-00434-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-023-00434-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A technique for the transfer-free growth of 2-inch wafer-scale patterned graphene directly on GaN LED epilayers is introduced. High-quality graphene as transparent electrodes and heat spreaders is synthesized directly on GaN by PECVD at only 600 °C deposition temperature and within 3 min growth time. Co acts as both the catalyst for graphene growth and the dry etching mask for GaN mesas, which greatly improves the efficiency of the semiconductor device process. Elegantly, the graphene growth is in accordance with the shape of Co, which offers a lithography-free patterning technique of the graphene. Afterward, using our penetration etching method through the PMMA and graphene layers, the Co is peacefully removed, and in-situ Ohmic contact is achieved between the graphene and p-GaN where the contact resistivity is only 0.421 Ω cm2. The graphene sheet resistance is as low as 631.2 Ω sq−1. The device is also superior to the counterpart graphene-free LED in terms of heat spreading behavior, as evidenced by the lower junction temperature and thermal resistance. Most importantly, the developed technique produces graphene with excellent performance and is intrinsically more scalable, controllable, and semiconductor industry compatible than traditionally transferred graphene.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.