Pub Date : 2025-01-01Epub Date: 2025-01-08DOI: 10.1038/s41699-025-00525-9
Oran Cassidy, Kevin Synnatschke, Jose M Munuera, Cian Gabbett, Tian Carey, Luke Doolan, Eoin Caffrey, Jonathan N Coleman
Thin films fabricated from solution-processed graphene nanosheets are of considerable technological interest for a wide variety of applications, such as transparent conductors, supercapacitors, and memristors. However, very thin printed films tend to have low conductivity compared to thicker ones. In this work, we demonstrate a simple layer-by-layer deposition method which yields thin films of highly-aligned, electrochemically-exfoliated graphene which have low roughness and nanometer-scale thickness control. By optimising the deposition parameters, we demonstrate films with high conductivity (1.3 × 105 S/m) at very low thickness (11 nm). Finally, we connect our high conductivities to low inter-nanosheet junction resistances (RJ), which we estimate at RJ ~ 1kΩ.
{"title":"Layer-by-layer assembly yields thin graphene films with near theoretical conductivity.","authors":"Oran Cassidy, Kevin Synnatschke, Jose M Munuera, Cian Gabbett, Tian Carey, Luke Doolan, Eoin Caffrey, Jonathan N Coleman","doi":"10.1038/s41699-025-00525-9","DOIUrl":"10.1038/s41699-025-00525-9","url":null,"abstract":"<p><p>Thin films fabricated from solution-processed graphene nanosheets are of considerable technological interest for a wide variety of applications, such as transparent conductors, supercapacitors, and memristors. However, very thin printed films tend to have low conductivity compared to thicker ones. In this work, we demonstrate a simple layer-by-layer deposition method which yields thin films of highly-aligned, electrochemically-exfoliated graphene which have low roughness and nanometer-scale thickness control. By optimising the deposition parameters, we demonstrate films with high conductivity (1.3 × 10<sup>5 </sup>S/m) at very low thickness (11 nm). Finally, we connect our high conductivities to low inter-nanosheet junction resistances (R<sub>J</sub>), which we estimate at R<sub>J</sub> ~ 1kΩ.</p>","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":"9 1","pages":"2"},"PeriodicalIF":9.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142971735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-21DOI: 10.1038/s41699-024-00522-4
Kiran A. Nirmal, Dhananjay D. Kumbhar, Arul Varman Kesavan, Tukaram D. Dongale, Tae Geun Kim
The scalability of two-dimensional (2D) materials down to a single monolayer offers exciting prospects for high-speed, energy-efficient, scalable memristors. This review highlights the development of 2D material-based memristors and potential applications beyond memory, including neuromorphic, in-memory, in-sensor, and complex computing. This review also encompasses potential challenges and future opportunities for advancing these materials and technologies, underscoring the transformative impact of 2D memristors on versatile and sustainable electronic devices and systems.
{"title":"Advancements in 2D layered material memristors: unleashing their potential beyond memory","authors":"Kiran A. Nirmal, Dhananjay D. Kumbhar, Arul Varman Kesavan, Tukaram D. Dongale, Tae Geun Kim","doi":"10.1038/s41699-024-00522-4","DOIUrl":"10.1038/s41699-024-00522-4","url":null,"abstract":"The scalability of two-dimensional (2D) materials down to a single monolayer offers exciting prospects for high-speed, energy-efficient, scalable memristors. This review highlights the development of 2D material-based memristors and potential applications beyond memory, including neuromorphic, in-memory, in-sensor, and complex computing. This review also encompasses potential challenges and future opportunities for advancing these materials and technologies, underscoring the transformative impact of 2D memristors on versatile and sustainable electronic devices and systems.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-27"},"PeriodicalIF":9.1,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00522-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1038/s41699-024-00519-z
Shaojie Zhang, Ye Tao, Shiwei Qin, Dong Li, Kunkun Cao, Lin Lv, Guokun Ma, Yiheng Rao, Houzhao Wan, Wang Hao
Memristors offer vast application opportunities in storage, logic devices, and computation due to their nonvolatility, low power consumption, and fast operational speeds. Two-dimensional materials, characterized by their novel mechanisms, ultra-thin channels, high mechanical flexibility, and superior electrical properties, demonstrate immense potential in the domain of high-density, fast, and energy-efficient memristors. Hexagonal boron nitride (h-BN), as a new two-dimensional material, has the characteristics of high thermal conductivity, flexibility, and low power consumption, and has a significant application prospect in the field of memristor. In this paper, the recent research progress of the h-BN memristor is reviewed from the aspects of device fabrication, resistance mechanism, and application prospect.
{"title":"Memristors based on two-dimensional h-BN materials: synthesis, mechanism, optimization and application","authors":"Shaojie Zhang, Ye Tao, Shiwei Qin, Dong Li, Kunkun Cao, Lin Lv, Guokun Ma, Yiheng Rao, Houzhao Wan, Wang Hao","doi":"10.1038/s41699-024-00519-z","DOIUrl":"10.1038/s41699-024-00519-z","url":null,"abstract":"Memristors offer vast application opportunities in storage, logic devices, and computation due to their nonvolatility, low power consumption, and fast operational speeds. Two-dimensional materials, characterized by their novel mechanisms, ultra-thin channels, high mechanical flexibility, and superior electrical properties, demonstrate immense potential in the domain of high-density, fast, and energy-efficient memristors. Hexagonal boron nitride (h-BN), as a new two-dimensional material, has the characteristics of high thermal conductivity, flexibility, and low power consumption, and has a significant application prospect in the field of memristor. In this paper, the recent research progress of the h-BN memristor is reviewed from the aspects of device fabrication, resistance mechanism, and application prospect.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-25"},"PeriodicalIF":9.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00519-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-19DOI: 10.1038/s41699-024-00515-3
Xiangru Kong, Panchapakesan Ganesh, Liangbo Liang
Magneto-Raman spectroscopy has been used to study spin-phonon coupling in two-dimensional (2D) magnets. Raman spectra of CrI3 show a strong dependence on the magnetic order within a layer and between the layers. Here we carry out the first systematic theoretical investigation of the magneto-Raman effect in 2D magnets by performing density functional theory calculations and developing a generalized polarizability model. Our first-principles simulations well reproduce experimental Raman spectra of CrI3 with different magnetic states. The model reveals how the change of spin orientation in each layer is coupled to the layer’s vibration to induce or eliminate the spin-dependent anti-symmetric off-diagonal terms in the Raman tensor for altering the selection rules. We also uncover that the correlation between phonon modes and magnetic orders is a universal phenomenon, which should exist in other phonon modes and 2D magnets. Our predictive simulations and modeling are expected to guide the research in 2D magnets.
{"title":"First-principles study of the magneto-Raman effect in van der Waals layered magnets","authors":"Xiangru Kong, Panchapakesan Ganesh, Liangbo Liang","doi":"10.1038/s41699-024-00515-3","DOIUrl":"10.1038/s41699-024-00515-3","url":null,"abstract":"Magneto-Raman spectroscopy has been used to study spin-phonon coupling in two-dimensional (2D) magnets. Raman spectra of CrI3 show a strong dependence on the magnetic order within a layer and between the layers. Here we carry out the first systematic theoretical investigation of the magneto-Raman effect in 2D magnets by performing density functional theory calculations and developing a generalized polarizability model. Our first-principles simulations well reproduce experimental Raman spectra of CrI3 with different magnetic states. The model reveals how the change of spin orientation in each layer is coupled to the layer’s vibration to induce or eliminate the spin-dependent anti-symmetric off-diagonal terms in the Raman tensor for altering the selection rules. We also uncover that the correlation between phonon modes and magnetic orders is a universal phenomenon, which should exist in other phonon modes and 2D magnets. Our predictive simulations and modeling are expected to guide the research in 2D magnets.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-10"},"PeriodicalIF":9.1,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00515-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1038/s41699-024-00518-0
Asif A. Shah, Aadil Bashir Dar, Mayank Shrivastava
Recently, Non-Volatile Resistive Switching (NVRS) has been demonstrated in Metal-monolayer MoS2-Metal atomristors. While experiments based on Au metal report the origin of NVRS to be extrinsic, caused by the Au atom adsorption into sulfur vacancies, however, more recently molecular dynamics based on reactive forcefield (ReaxFF) suggest that both monolayer and multilayer MoS2 can also host intrinsic non-volatile resistive states whereby an S atom at a monosulfur vacancy (parent state) pops into the molybdenum plane (popped state) under applied out-of-plane electric field. Our rigorous computations based on Density Functional Theory (DFT) and M3GNet (deep learned forcefield) to carry out structural relaxations and molecular dynamics reveal that such a popped state is unstable and does not represent any intrinsic non-volatile resistive state. This is in contrast with the ReaxFF used in previous studies which inaccurately describes the Potential Energy Surface (PES) of MoS2 around the popped state. More importantly, Au atom adsorbed at a sulfur vacancy in MoS2 atomristors represents a stable non-volatile resistive state which is in excellent agreement with earlier experiment. Furthermore, it is observed that the local heating generated around the adsorbed Au atom in low resistive state leads to cycle-to-cycle variability in MoS2 atomristors.
{"title":"Revisiting the origin of non-volatile resistive switching in MoS2 atomristor","authors":"Asif A. Shah, Aadil Bashir Dar, Mayank Shrivastava","doi":"10.1038/s41699-024-00518-0","DOIUrl":"10.1038/s41699-024-00518-0","url":null,"abstract":"Recently, Non-Volatile Resistive Switching (NVRS) has been demonstrated in Metal-monolayer MoS2-Metal atomristors. While experiments based on Au metal report the origin of NVRS to be extrinsic, caused by the Au atom adsorption into sulfur vacancies, however, more recently molecular dynamics based on reactive forcefield (ReaxFF) suggest that both monolayer and multilayer MoS2 can also host intrinsic non-volatile resistive states whereby an S atom at a monosulfur vacancy (parent state) pops into the molybdenum plane (popped state) under applied out-of-plane electric field. Our rigorous computations based on Density Functional Theory (DFT) and M3GNet (deep learned forcefield) to carry out structural relaxations and molecular dynamics reveal that such a popped state is unstable and does not represent any intrinsic non-volatile resistive state. This is in contrast with the ReaxFF used in previous studies which inaccurately describes the Potential Energy Surface (PES) of MoS2 around the popped state. More importantly, Au atom adsorbed at a sulfur vacancy in MoS2 atomristors represents a stable non-volatile resistive state which is in excellent agreement with earlier experiment. Furthermore, it is observed that the local heating generated around the adsorbed Au atom in low resistive state leads to cycle-to-cycle variability in MoS2 atomristors.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.1,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00518-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1038/s41699-024-00516-2
Deobrat Singh, Nisha Singh, Yogesh Sonvane
In the present work, we investigates the potential of two dimensional (2D) Janus MoSH monolayer as an electrocatalyst for overall water splitting using first-principles calculations. Our results shows that 2D Janus MoSH monolayer exhibits excellent structural stability and electronic properties, which are essential for efficient electrocatalysis. We find that the charge transfer mechanism between Mo and S atoms plays a crucial role in the electrocatalytic activity of 2D Janus MoSH monolayer. Due to the asymmetric structure of MoSH monolayer, it has intrinsic electric field with dipole moment of 0.24 D. Moreover, we demonstrate that 2D Janus MoSH monolayer exhibits high catalytic activity for both hydrogen evolution reaction (HER) with overpotential 0.04 V and oxygen evolution reaction (OER) with overpotential 0.11 V, making it a promising candidate for overall water splitting. Our findings have significant implications for the design and optimization of 2D monolayered materials for renewable energy production. By providing insights into the underlying mechanisms of HER and OER on 2D Janus MoSH monolayer, our study paves the way for the development of efficient and sustainable electrocatalysts for water splitting. We hope that current work will be helpful in understanding the electrocatalytic mechanism of 2D Janus MoSH monolayer and its potential applications in renewable energy production.
在本研究中,我们利用第一原理计算研究了二维(2D)Janus MoSH 单层作为整体水分离电催化剂的潜力。我们的研究结果表明,二维 Janus MoSH 单分子层具有优异的结构稳定性和电子特性,这对于高效电催化至关重要。我们发现,Mo 原子和 S 原子间的电荷转移机制在二维 Janus MoSH 单层的电催化活性中起着至关重要的作用。由于 MoSH 单层的不对称结构,它具有偶极矩为 0.24 D 的本征电场。此外,我们还证明了二维 Janus MoSH 单分子层在过电位为 0.04 V 的氢进化反应(HER)和过电位为 0.11 V 的氧进化反应(OER)中都表现出很高的催化活性,使其成为整体水分离的理想候选材料。我们的发现对设计和优化用于可再生能源生产的二维单层材料具有重要意义。通过深入了解二维 Janus MoSH 单层上 HER 和 OER 的基本机制,我们的研究为开发高效、可持续的水分离电催化剂铺平了道路。我们希望目前的工作有助于理解二维 Janus MoSH 单层的电催化机理及其在可再生能源生产中的潜在应用。
{"title":"Electrocatalytic mechanism for overall water splitting to produce sustainable hydrogen by 2D Janus MoSH monolayer","authors":"Deobrat Singh, Nisha Singh, Yogesh Sonvane","doi":"10.1038/s41699-024-00516-2","DOIUrl":"10.1038/s41699-024-00516-2","url":null,"abstract":"In the present work, we investigates the potential of two dimensional (2D) Janus MoSH monolayer as an electrocatalyst for overall water splitting using first-principles calculations. Our results shows that 2D Janus MoSH monolayer exhibits excellent structural stability and electronic properties, which are essential for efficient electrocatalysis. We find that the charge transfer mechanism between Mo and S atoms plays a crucial role in the electrocatalytic activity of 2D Janus MoSH monolayer. Due to the asymmetric structure of MoSH monolayer, it has intrinsic electric field with dipole moment of 0.24 D. Moreover, we demonstrate that 2D Janus MoSH monolayer exhibits high catalytic activity for both hydrogen evolution reaction (HER) with overpotential 0.04 V and oxygen evolution reaction (OER) with overpotential 0.11 V, making it a promising candidate for overall water splitting. Our findings have significant implications for the design and optimization of 2D monolayered materials for renewable energy production. By providing insights into the underlying mechanisms of HER and OER on 2D Janus MoSH monolayer, our study paves the way for the development of efficient and sustainable electrocatalysts for water splitting. We hope that current work will be helpful in understanding the electrocatalytic mechanism of 2D Janus MoSH monolayer and its potential applications in renewable energy production.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00516-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Two-dimensional excitons, characterized by high binding energy and valley pseudospin, are key to advancing photonic and electronic devices through controlled spatiotemporal dynamics of exciton flux. However, optimizing excitonic transport and emission dynamics, considering potential disorder and phonon scattering, requires further research. This study systematically investigates the effects of hexagonal boron nitride (hBN) encapsulation on semiconductor monolayers. Time-resolved photoluminescence (TRPL) and femtosecond pump-probe techniques reveal that encapsulation reduces excitonic radiative lifetime and enhances exciton-exciton annihilation, due to increased dielectric screening, which enlarges the Bohr radius and decreases binding energy. It also manages phonon scattering and thermal fluctuations, confirming non-monotonic temperature effects on emission and diffusion. The reduced disorder by hBN leads to a lowered optimized temperature from 250 K to 200 K, concurrently resulting in a doubled enhancement of the effective exciton diffusion coefficient. These findings highlight the importance of thermal and dielectric environmental control for ultrafast 2D exciton-based devices.
二维激子具有高结合能和谷伪空素的特点,是通过控制激子通量的时空动态来推动光子和电子器件发展的关键。然而,考虑到潜在的无序和声子散射,优化激子传输和发射动力学还需要进一步的研究。本研究系统地探讨了六方氮化硼(hBN)封装对半导体单层的影响。时间分辨光致发光(TRPL)和飞秒泵浦探针技术表明,封装降低了激子辐射寿命,增强了激子-激子湮灭,这是由于增加了介质屏蔽,从而扩大了玻尔半径,降低了结合能。它还能控制声子散射和热波动,证实了温度对发射和扩散的非单调效应。由于 hBN 减少了无序性,优化温度从 250 K 降低到 200 K,同时导致有效激子扩散系数成倍提高。这些发现凸显了热和介电环境控制对基于二维激子的超快器件的重要性。
{"title":"Transient dynamics and long-range transport of 2D exciton with managed potential disorder and phonon scattering","authors":"Wenqi Qian, Pengfei Qi, Yuchen Dai, Guangyi Tao, Haiyi Liu, Lie Lin, Zheyu Fang, Weiwei Liu","doi":"10.1038/s41699-024-00512-6","DOIUrl":"10.1038/s41699-024-00512-6","url":null,"abstract":"Two-dimensional excitons, characterized by high binding energy and valley pseudospin, are key to advancing photonic and electronic devices through controlled spatiotemporal dynamics of exciton flux. However, optimizing excitonic transport and emission dynamics, considering potential disorder and phonon scattering, requires further research. This study systematically investigates the effects of hexagonal boron nitride (hBN) encapsulation on semiconductor monolayers. Time-resolved photoluminescence (TRPL) and femtosecond pump-probe techniques reveal that encapsulation reduces excitonic radiative lifetime and enhances exciton-exciton annihilation, due to increased dielectric screening, which enlarges the Bohr radius and decreases binding energy. It also manages phonon scattering and thermal fluctuations, confirming non-monotonic temperature effects on emission and diffusion. The reduced disorder by hBN leads to a lowered optimized temperature from 250 K to 200 K, concurrently resulting in a doubled enhancement of the effective exciton diffusion coefficient. These findings highlight the importance of thermal and dielectric environmental control for ultrafast 2D exciton-based devices.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00512-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1038/s41699-024-00517-1
Andrejs Kudlis, Ivan Aleksandrov, Zaur Alisultanov, Kalman Varga, Ivan Shelykh, Vanik Shahnazaryan
Magnetic field is a powerful tool for the manipulation of material’s electronic and optical properties. In the domain of transition metal dichalcogenide monolayers, it allows one to unveil the spin, valley, and orbital properties of many-body excitonic complexes. Here we study theoretically the impact of normal-to-plane magnetic field on trions and trion-polaritons. We demonstrate that spin and orbital effects of a magnetic field give comparable contributions to the trion energies. Moreover, as magnetic field redistributes the free electron gas between two valleys in the conductance band, the trion-photon coupling becomes polarization and valley dependent. This results in an effective giant Zeeman splitting of trion-polaritons, in-line with the recent experimental observations.
{"title":"Theory of magnetotrion-polaritons in transition metal dichalcogenide monolayers","authors":"Andrejs Kudlis, Ivan Aleksandrov, Zaur Alisultanov, Kalman Varga, Ivan Shelykh, Vanik Shahnazaryan","doi":"10.1038/s41699-024-00517-1","DOIUrl":"10.1038/s41699-024-00517-1","url":null,"abstract":"Magnetic field is a powerful tool for the manipulation of material’s electronic and optical properties. In the domain of transition metal dichalcogenide monolayers, it allows one to unveil the spin, valley, and orbital properties of many-body excitonic complexes. Here we study theoretically the impact of normal-to-plane magnetic field on trions and trion-polaritons. We demonstrate that spin and orbital effects of a magnetic field give comparable contributions to the trion energies. Moreover, as magnetic field redistributes the free electron gas between two valleys in the conductance band, the trion-photon coupling becomes polarization and valley dependent. This results in an effective giant Zeeman splitting of trion-polaritons, in-line with the recent experimental observations.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.1,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00517-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1038/s41699-024-00513-5
Yulu Mao, Fan Fei, Dajun Zhang, Haolin You, Haotian Jiang, Carter Fox, Yangchen He, Daniel Rhodes, Chu Ma, Jun Xiao, Ying Wang
The physical properties of two-dimensional (2D) van der Waals (vdW) materials are profoundly influenced by their stacking orders, which affect interlayer coupling and crystal symmetry, leading to fascinating strongly correlated orders. Detecting stacking orders is important, yet challenging as they involve sub-nanometer shifts in the relative arrangement of layers. In this study, we utilize nanomechanical resonators to detect the strain change during the stacking order transition of octahedrally coordinated thin molybdenum ditelluride (MoTe2) membranes and show the change in stacking orders can be reflected by the vibration modes of nanomechanical resonators. We discover that a strain as small as 0.014%—induced by transitions in the stacking order—results in a notable frequency shift up to 1.019 MHz in the mechanical resonance. We establish the relationship between the detection sensitivity of stacking orders and both internal and external parameters including higher-order vibrations, electrostatic energy, and initial strain. Our nanomechanical methodology offers a potential avenue for creating a comprehensive phase diagram by uncovering stacking orders across a wide array of van der Waals materials and leveraging ultralow-barrier stacking order transitions for energy-efficient devices.
{"title":"Revealing stacking order transition via nanomechanical resonator","authors":"Yulu Mao, Fan Fei, Dajun Zhang, Haolin You, Haotian Jiang, Carter Fox, Yangchen He, Daniel Rhodes, Chu Ma, Jun Xiao, Ying Wang","doi":"10.1038/s41699-024-00513-5","DOIUrl":"10.1038/s41699-024-00513-5","url":null,"abstract":"The physical properties of two-dimensional (2D) van der Waals (vdW) materials are profoundly influenced by their stacking orders, which affect interlayer coupling and crystal symmetry, leading to fascinating strongly correlated orders. Detecting stacking orders is important, yet challenging as they involve sub-nanometer shifts in the relative arrangement of layers. In this study, we utilize nanomechanical resonators to detect the strain change during the stacking order transition of octahedrally coordinated thin molybdenum ditelluride (MoTe2) membranes and show the change in stacking orders can be reflected by the vibration modes of nanomechanical resonators. We discover that a strain as small as 0.014%—induced by transitions in the stacking order—results in a notable frequency shift up to 1.019 MHz in the mechanical resonance. We establish the relationship between the detection sensitivity of stacking orders and both internal and external parameters including higher-order vibrations, electrostatic energy, and initial strain. Our nanomechanical methodology offers a potential avenue for creating a comprehensive phase diagram by uncovering stacking orders across a wide array of van der Waals materials and leveraging ultralow-barrier stacking order transitions for energy-efficient devices.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-7"},"PeriodicalIF":9.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00513-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1038/s41699-024-00514-4
Natalie N. Neal, Kailash Arole, Huaixuan Cao, Vrushali Kotasthane, Sisi Xiang, Diego Ross, Peter R. Stevenson, Miladin Radovic, Micah J. Green, Jodie L. Lutkenhaus
Structural color arises from light scattering rather than organic pigments and can be found in Nature, such as in bird feathers and butterfly wings. Synthetic materials can mimic Nature by leveraging materials with contrasting optical characteristics by controlling each materials’ spatial arrangement in a heterostructure. Two-dimensional MXene nanosheets are particularly interesting due to their unique optical properties, but MXenes have not been used directly as a structural colorant because it is challenging to control the spatial placement of MXenes at the nanometer level. Here, we report the emergence of structural color in layer-by-layer (LbL) assemblies of Ti3C2Tz MXene nanosheets and polyelectrolyte heterostructures with controlled block thicknesses. The block thickness and spatial placement of MXene are controlled by the assembly’s salt concentration and number of layer pairs. This work demonstrates that optical characteristics of MXene/polyelectrolyte heterostructures depend on MXene content and placement, while deepening the understanding of MXenes within structural color films.
{"title":"Controlled layer-by-layer assembly and structured coloration of Ti3C2Tz MXene/polyelectrolyte heterostructures","authors":"Natalie N. Neal, Kailash Arole, Huaixuan Cao, Vrushali Kotasthane, Sisi Xiang, Diego Ross, Peter R. Stevenson, Miladin Radovic, Micah J. Green, Jodie L. Lutkenhaus","doi":"10.1038/s41699-024-00514-4","DOIUrl":"10.1038/s41699-024-00514-4","url":null,"abstract":"Structural color arises from light scattering rather than organic pigments and can be found in Nature, such as in bird feathers and butterfly wings. Synthetic materials can mimic Nature by leveraging materials with contrasting optical characteristics by controlling each materials’ spatial arrangement in a heterostructure. Two-dimensional MXene nanosheets are particularly interesting due to their unique optical properties, but MXenes have not been used directly as a structural colorant because it is challenging to control the spatial placement of MXenes at the nanometer level. Here, we report the emergence of structural color in layer-by-layer (LbL) assemblies of Ti3C2Tz MXene nanosheets and polyelectrolyte heterostructures with controlled block thicknesses. The block thickness and spatial placement of MXene are controlled by the assembly’s salt concentration and number of layer pairs. This work demonstrates that optical characteristics of MXene/polyelectrolyte heterostructures depend on MXene content and placement, while deepening the understanding of MXenes within structural color films.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-12"},"PeriodicalIF":9.1,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00514-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142694868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}