A Comparative Study between Silicon Carbide and Silicon Nitride based Single Cell CMUT

Rakesh Kanjilal, Reshmi Maity
{"title":"A Comparative Study between Silicon Carbide and Silicon Nitride based Single Cell CMUT","authors":"Rakesh Kanjilal, Reshmi Maity","doi":"10.36548/jei.2023.3.006","DOIUrl":null,"url":null,"abstract":"This research explores the design and conducts a comparative analysis of a non-insulated Capacitive Micromachined Ultrasonic Transducer (CMUT) featuring an innovative asymmetric electrode configuration to improve the performance of the device. Specifically, this configuration involves the utilization of a top electrode with a smaller radius in comparison to the bottom electrode. The study encompasses an investigation into the effects of varying biasing voltage within the range of 40 V to 100 V. The materials employed in this study are carefully selected to optimize the CMUT's performance. The substrate material is silicon, and the bottom and top electrodes are made from aluminium. Additionally, silicon dioxide is utilized as the foundation material within the device's structure.","PeriodicalId":52825,"journal":{"name":"Journal of Electrical Electronics and Informatics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Electronics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36548/jei.2023.3.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores the design and conducts a comparative analysis of a non-insulated Capacitive Micromachined Ultrasonic Transducer (CMUT) featuring an innovative asymmetric electrode configuration to improve the performance of the device. Specifically, this configuration involves the utilization of a top electrode with a smaller radius in comparison to the bottom electrode. The study encompasses an investigation into the effects of varying biasing voltage within the range of 40 V to 100 V. The materials employed in this study are carefully selected to optimize the CMUT's performance. The substrate material is silicon, and the bottom and top electrodes are made from aluminium. Additionally, silicon dioxide is utilized as the foundation material within the device's structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳化硅与氮化硅单芯CMUT的比较研究
本研究探索了一种非绝缘电容式微机械超声换能器(CMUT)的设计并进行了比较分析,该换能器采用了创新的非对称电极配置,以提高器件的性能。具体地说,这种配置涉及到与底部电极相比具有更小半径的顶部电极的利用。该研究包括对40 V至100 V范围内不同偏置电压的影响的调查。本研究中使用的材料经过精心挑选,以优化CMUT的性能。衬底材料是硅,底部和顶部电极由铝制成。此外,二氧化硅被用作设备结构内的基础材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Analysis and Detection of Power System Network Faults with Wavelet Transform Application of Bat Algorithm for Data Anonymization Self-Driving Car for a Smart and Safer Environment – A Review Implementation of OTA in 90nm Technology with Bandgap Reference Application A Comparative Study between Silicon Carbide and Silicon Nitride based Single Cell CMUT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1