Vinayak Jagadish, R. Srikanth, Francesco Petruccione
{"title":"Initial Correlations and Complete Positivity of Dynamical Maps","authors":"Vinayak Jagadish, R. Srikanth, Francesco Petruccione","doi":"10.1142/s1230161223500117","DOIUrl":null,"url":null,"abstract":"It is now increasingly realized in the study of open system dynamics that initial correlations do not pose a conceptual difficulty as traditionally believed. A similar methodology as used to describe initial product states can be adopted, with the only difference being that the reduced dynamics is possibly not completely positive, entailing that only a restricted set of initial reduced states lead to a physically valid dynamics. Here we study the interplay between the initial correlations, especially in the form of highly entangled states, and the system–environment unitary. In particular, for almost any initial entangled state, one can furnish infinitely many joint unitaries that generate CP dynamics on the system. Restricting to the case of initial, pure entangled states, we obtain the scaling of the dimension of the set of these unitaries and show that it is of zero measure in the set of all possible interaction unitaries.","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"7 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Systems & Information Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1230161223500117","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is now increasingly realized in the study of open system dynamics that initial correlations do not pose a conceptual difficulty as traditionally believed. A similar methodology as used to describe initial product states can be adopted, with the only difference being that the reduced dynamics is possibly not completely positive, entailing that only a restricted set of initial reduced states lead to a physically valid dynamics. Here we study the interplay between the initial correlations, especially in the form of highly entangled states, and the system–environment unitary. In particular, for almost any initial entangled state, one can furnish infinitely many joint unitaries that generate CP dynamics on the system. Restricting to the case of initial, pure entangled states, we obtain the scaling of the dimension of the set of these unitaries and show that it is of zero measure in the set of all possible interaction unitaries.
期刊介绍:
The aim of the Journal is to promote interdisciplinary research in mathematics, physics, engineering and life sciences centered around the issues of broadly understood information processing, storage and transmission, in both quantum and classical settings. Our special interest lies in the information-theoretic approach to phenomena dealing with dynamics and thermodynamics, control, communication, filtering, memory and cooperative behaviour, etc., in open complex systems.