Pub Date : 2024-04-05DOI: 10.1142/s123016122450001x
Jinshu Chen, Shexiang Hai
In this paper, we study the environment induced decoherence of quantum exclusion semigroups constructed by quantum Bernoulli noises. We first study the structure of the decoherence-free algebra and discuss some of its properties, and give the conditions for its possible mutual inclusions with the set of fixed points. Then we describe the structure of the set of fixed points and use the new results obtained here to discuss the environment induced decoherence properties of the semigroup.
{"title":"Environment Decoherence of Quantum Exclusion Semigroups in Terms of Quantum Bernoulli Noises","authors":"Jinshu Chen, Shexiang Hai","doi":"10.1142/s123016122450001x","DOIUrl":"https://doi.org/10.1142/s123016122450001x","url":null,"abstract":"<p>In this paper, we study the environment induced decoherence of quantum exclusion semigroups constructed by quantum Bernoulli noises. We first study the structure of the decoherence-free algebra and discuss some of its properties, and give the conditions for its possible mutual inclusions with the set of fixed points. Then we describe the structure of the set of fixed points and use the new results obtained here to discuss the environment induced decoherence properties of the semigroup.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"25 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1142/s1230161224500057
R. Englman
Exploring a general stratagem for the way that Nature operates, one finds that in a variety of phenomena of one’s experience these come into existence (only) thanks to the special way that two disparate systems, being parts of an open system, are coupled together. This connectedness is shown here to come about through a Lindbladian operator, such that it leads to the exclusion of many more possibilities absent in the connectedness. An instance of this phenomenon, here subsumed under the term “inter-system connectedness” and known to occur in the reduction of quantum mechanical wave-packets, is here proposed in the emergence of consciousness resulting from and linked to neural activity. For this, a dual Hilbert-space formulation of mental activities is proposed, which then enables a semi-quantitative explanation of R. N. Shepard’s seminal findings for reaction times in recalls. Affinities with and differences from Khrennikov’s recent widely scoped treatise on these subjects are described.
在探索大自然运行方式的一般策略时,我们会发现,在我们经历的各种现象中,这些现象的出现(仅仅)归功于两个不同的系统作为开放系统的一部分以特殊的方式耦合在一起。在这里,我们可以看到这种关联性是通过林德布拉第算子产生的,它导致排除了更多在关联性中不存在的可能性。这种现象在这里被归纳为 "系统间关联性",并且已知发生在量子力学波包的还原过程中。为此,我们提出了心理活动的双重希尔伯特空间表述,从而对谢泼德(R. N. Shepard)关于回忆反应时间的开创性发现做出了半定量的解释。此外,还介绍了与赫伦尼科夫(Khrennikov)最近就这些主题发表的范围广泛的论文的相似之处和不同之处。
{"title":"Lindbladian Dynamics Generates Inter-system Connectedness in Psychological Phenomena","authors":"R. Englman","doi":"10.1142/s1230161224500057","DOIUrl":"https://doi.org/10.1142/s1230161224500057","url":null,"abstract":"<p>Exploring a general stratagem for the way that Nature operates, one finds that in a variety of phenomena of one’s experience these come into existence (only) thanks to the special way that two disparate systems, being parts of an open system, are coupled together. This connectedness is shown here to come about through a Lindbladian operator, such that it leads to the exclusion of many more possibilities absent in the connectedness. An instance of this phenomenon, here subsumed under the term “inter-system connectedness” and known to occur in the reduction of quantum mechanical wave-packets, is here proposed in the emergence of consciousness resulting from and linked to neural activity. For this, a dual Hilbert-space formulation of mental activities is proposed, which then enables a semi-quantitative explanation of R. N. Shepard’s seminal findings for reaction times in recalls. Affinities with and differences from Khrennikov’s recent widely scoped treatise on these subjects are described.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"25 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1142/s1230161224500033
B. V. Rajarama Bhat, Purbayan Chakraborty, Uwe Franz
The Weyl operators give a convenient basis of which is also orthonormal with respect to the Hilbert-Schmidt inner product. The properties of such a basis can be generalised to the notion of a nice error basis (NEB), as introduced by E. Knill [3]. We can use an NEB of to construct an NEB for , the space of linear maps on . Any linear map will then correspond to a coefficient matrix in the basis decomposition with respect to such an NEB of . Positivity, complete (co)positivity or other properties of a linear map can be characterised in terms of such a coefficient matrix.
{"title":"Nice Error Basis and Quantum Channel","authors":"B. V. Rajarama Bhat, Purbayan Chakraborty, Uwe Franz","doi":"10.1142/s1230161224500033","DOIUrl":"https://doi.org/10.1142/s1230161224500033","url":null,"abstract":"<p>The Weyl operators give a convenient basis of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> which is also orthonormal with respect to the Hilbert-Schmidt inner product. The properties of such a basis can be generalised to the notion of a nice error basis (NEB), as introduced by E. Knill [3]. We can use an NEB of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> to construct an NEB for <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Lin</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span>, the space of linear maps on <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Any linear map will then correspond to a <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">×</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> coefficient matrix in the basis decomposition with respect to such an NEB of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Lin</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span>. Positivity, complete (co)positivity or other properties of a linear map can be characterised in terms of such a coefficient matrix.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"177 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1142/s1230161224500045
Frederik vom Ende
We generalize a recent result stating that all analytic quantum dynamics can be represented exactly as the reduction of unitary dynamics generated by a time- dependent Hamiltonian. More precisely, we prove that the partial trace over analytic paths of unitaries can approximate any Lipschitz-continuous quantum dynamics arbitrarily well. Equivalently, all such dynamics can be approximated by analytic Kraus operators. We conclude by discussing potential improvements and generalizations of these results, their limitations, and the general challenges one has to overcome when trying to relate dynamics to quantities on the system–environment level.
{"title":"Finite-Dimensional Stinespring Curves Can Approximate Any Dynamics","authors":"Frederik vom Ende","doi":"10.1142/s1230161224500045","DOIUrl":"https://doi.org/10.1142/s1230161224500045","url":null,"abstract":"<p>We generalize a recent result stating that all analytic quantum dynamics can be represented exactly as the reduction of unitary dynamics generated by a time- dependent Hamiltonian. More precisely, we prove that the partial trace over analytic paths of unitaries can approximate any Lipschitz-continuous quantum dynamics arbitrarily well. Equivalently, all such dynamics can be approximated by analytic Kraus operators. We conclude by discussing potential improvements and generalizations of these results, their limitations, and the general challenges one has to overcome when trying to relate dynamics to quantities on the system–environment level.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"249 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1142/s1230161224500069
Andreas J. C. Woitzik, Lukas Hoffmann, Andreas Buchleitner, Edoardo G. Carnio
Certifying the performance of available quantum computing hardware requires standardized tests. We propose a simple energy estimation benchmark to scrutinize actual output against gate and readout errors reported for the IBM Quantum System One platform, where we collected unprecedented amount of data from several devices, mostly from the one in Ehningen, Germany. We observe oscillations of the benchmark data with a characteristic timescale of two hours, as well as outliers. This suggests that current mitigation techniques need to be adapted to account for nontrivial time dependencies of the devices’ output.
认证现有量子计算硬件的性能需要标准化测试。我们提出了一个简单的能量估算基准,根据 IBM 量子系统一号平台报告的门和读出误差仔细检查实际输出,我们从多个设备上收集了前所未有的大量数据,其中大部分来自德国埃宁根的设备。我们观察到基准数据的振荡特征时间尺度为两小时,同时还观察到异常值。这表明,需要对当前的缓解技术进行调整,以考虑到设备输出的非微小时间依赖性。
{"title":"An Energy Estimation Benchmark for Quantum Computing Hardware","authors":"Andreas J. C. Woitzik, Lukas Hoffmann, Andreas Buchleitner, Edoardo G. Carnio","doi":"10.1142/s1230161224500069","DOIUrl":"https://doi.org/10.1142/s1230161224500069","url":null,"abstract":"<p>Certifying the performance of available quantum computing hardware requires standardized tests. We propose a simple energy estimation benchmark to scrutinize actual output against gate and readout errors reported for the IBM Quantum System One platform, where we collected unprecedented amount of data from several devices, mostly from the one in Ehningen, Germany. We observe oscillations of the benchmark data with a characteristic timescale of two hours, as well as outliers. This suggests that current mitigation techniques need to be adapted to account for nontrivial time dependencies of the devices’ output.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"177 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1142/s1230161224500021
Jorge R. Bolaños-Servín, Josué I. Rios-Cangas, Alfredo Uribe
The fast recurrent subspace (the biggest support of all invariant states) of a weak coupling limit type quantum Markov semigroup modeling a quantum transport open system of -energy levels is determined. This is achieved by characterizing the structure of all the invariant states and their spectra in terms of a natural generalization of the discrete Fourier transform operator. Finally, the attraction domains and long-time behaviour of the evolution are studied on hereditary subalgebras where faithful invariant states exist.
确定了一个弱耦合极限型量子马尔可夫半群的快速循环子空间(所有不变态的最大支持),该半群模拟了一个 N 能级的量子输运开放系统。这是通过用离散傅里叶变换算子的自然广义化来描述所有不变态的结构及其谱来实现的。最后,在存在忠实不变态的遗传子代数上研究了演化的吸引域和长期行为。
{"title":"The Fast Recurrent Subspace on an N-Level Quantum Energy Transport Model","authors":"Jorge R. Bolaños-Servín, Josué I. Rios-Cangas, Alfredo Uribe","doi":"10.1142/s1230161224500021","DOIUrl":"https://doi.org/10.1142/s1230161224500021","url":null,"abstract":"<p>The fast recurrent subspace (the biggest support of all invariant states) of a weak coupling limit type quantum Markov semigroup modeling a quantum transport open system of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span>-energy levels is determined. This is achieved by characterizing the structure of all the invariant states and their spectra in terms of a natural generalization of the discrete Fourier transform operator. Finally, the attraction domains and long-time behaviour of the evolution are studied on hereditary subalgebras where faithful invariant states exist.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"249 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140560298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-23DOI: 10.1142/s1230161223500208
Alina Stoica, Aurelian Isar
Different types of geometric and entropic quantum correlation quantifiers are studied for a system composed of two resonant bosonic modes embedded in a thermal bath. The description of the evolution of the correlation measures is formulated in the framework of the theory of open systems, based on completely positive quantum dynamical semigroups, by using both a geometric and entropic quantification of total nonclassical correlations of Gaussian states. We consider the special case when the initial squeezed thermal state of the system preserves its form in time. We show that time evolution of the measures strongly depends on the parameters characterising the initial state of the system (squeezing parameter and average thermal photon numbers of the two modes) and of the thermal environment (temperature of the thermal bath and dissipation rate). In the limit of large times all the considered measures asymptotically tend to zero value, corresponding to an asymptotic bimodal uncorrelated product state. We make a comparison between the behaviour of the evolution in time of the Gaussian geometric quantum correlations and Gaussian entropic quantum correlations.
{"title":"Geometric versus Entropic Gaussian Correlations in an Open Quantum System of Two Bosonic Modes","authors":"Alina Stoica, Aurelian Isar","doi":"10.1142/s1230161223500208","DOIUrl":"https://doi.org/10.1142/s1230161223500208","url":null,"abstract":"<p>Different types of geometric and entropic quantum correlation quantifiers are studied for a system composed of two resonant bosonic modes embedded in a thermal bath. The description of the evolution of the correlation measures is formulated in the framework of the theory of open systems, based on completely positive quantum dynamical semigroups, by using both a geometric and entropic quantification of total nonclassical correlations of Gaussian states. We consider the special case when the initial squeezed thermal state of the system preserves its form in time. We show that time evolution of the measures strongly depends on the parameters characterising the initial state of the system (squeezing parameter and average thermal photon numbers of the two modes) and of the thermal environment (temperature of the thermal bath and dissipation rate). In the limit of large times all the considered measures asymptotically tend to zero value, corresponding to an asymptotic bimodal uncorrelated product state. We make a comparison between the behaviour of the evolution in time of the Gaussian geometric quantum correlations and Gaussian entropic quantum correlations.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"32 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-23DOI: 10.1142/s123016122350021x
Luigi Accardi, Ameur Dhahri
We study the Markov evolutions associated to the expected Markov processes.
我们研究与预期马尔可夫过程相关的马尔可夫演化。
{"title":"2-Point Markov Evolutions","authors":"Luigi Accardi, Ameur Dhahri","doi":"10.1142/s123016122350021x","DOIUrl":"https://doi.org/10.1142/s123016122350021x","url":null,"abstract":"<p>We study the Markov evolutions associated to the expected Markov processes.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"13 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-23DOI: 10.1142/s123016122350018x
Jader E. Brasil, Josué Knorst, Artur O. Lopes
<p>Let <span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo></math></span><span></span> denote the set of <span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><mi>n</mi></math></span><span></span> by <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><mi>n</mi></math></span><span></span> complex matrices. Consider continuous time quantum semigroups <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><msub><mrow><mi mathvariant="cal">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=".17em"></mspace><mi mathvariant="cal">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, where <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mi mathvariant="cal">ℒ</mi><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy="false">(</mo><mi>ℂ</mi><mo stretchy="false">)</mo></math></span><span></span> is the infinitesimal generator. If we assume that <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><mi mathvariant="cal">ℒ</mi><mo stretchy="false">(</mo><mi>I</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, we will call <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=".17em"></mspace><mi mathvariant="cal">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span> a quantum Markov semigroup. Given a stationary density matrix <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><mi>ρ</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi mathvariant="cal">ℒ</mi></mrow></msub></math></span><span></span>, for the quantum Markov semigroup <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><msub><mrow><mi mathvariant="cal">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, we can define a continuous time stationary quantum Markov process, denoted by <span><math altimg="eq-00013.gif" display="inline" overflow="scroll"><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg="eq-00014.gif" display="inline" overflow="scroll"><mi>t</mi><mo>≥</mo><mn>0</mn><mo>.</mo></math></span><span></span> Given an <i>a priori</i> Laplacian operator <span><math altimg="e
让 Mn(ℂ) 表示 n×n 复矩阵的集合。考虑连续时间量子半群𝒫t=etℒ, t≥0,其中ℒ:Mn(ℂ)→Mn(ℂ)是无穷小发生器。如果假设ℒ(I)=0,我们就称 etℒ, t≥0 为量子马尔可夫半群。给定一个静态密度矩阵 ρ=ρℒ,对于量子马尔可夫半群 𝒫t,t≥0,我们可以定义一个连续时间静态量子马尔可夫过程,用 Xt 表示,t≥0。给定一个先验拉普拉斯算子 ℒ0:Mn(ℂ)→Mn(ℂ),我们将提出 Mn(ℂ) 上一类密度矩阵的熵的自然概念。给定一个赫尔墨斯算子 A:ℂn→ℂn(它起着哈密顿的作用),我们将研究 A 的压力变分原理的一个版本。我们将从ρA 推导出一个新的无穷小生成器ℒA。最后,由半群𝒫t=etℒA, t≥0 和初始静态密度矩阵定义的连续时间量子马尔可夫过程将被称为哈密顿 A 的连续时间平衡量子马尔可夫过程,它对应于哈密顿 A 作用的量子热力学平衡。
{"title":"Thermodynamic Formalism for Continuous-Time Quantum Markov Semigroups: the Detailed Balance Condition, Entropy, Pressure and Equilibrium Quantum Processes","authors":"Jader E. Brasil, Josué Knorst, Artur O. Lopes","doi":"10.1142/s123016122350018x","DOIUrl":"https://doi.org/10.1142/s123016122350018x","url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> denote the set of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> by <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> complex matrices. Consider continuous time quantum semigroups <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\".17em\"></mspace><mi mathvariant=\"cal\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, where <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℒ</mi><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the infinitesimal generator. If we assume that <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℒ</mi><mo stretchy=\"false\">(</mo><mi>I</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, we will call <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>e</mi></mrow><mrow><mi>t</mi><mspace width=\".17em\"></mspace><mi mathvariant=\"cal\">ℒ</mi></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span> a quantum Markov semigroup. Given a stationary density matrix <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>ρ</mi><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi mathvariant=\"cal\">ℒ</mi></mrow></msub></math></span><span></span>, for the quantum Markov semigroup <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">𝒫</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, we can define a continuous time stationary quantum Markov process, denoted by <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi><mo>≥</mo><mn>0</mn><mo>.</mo></math></span><span></span> Given an <i>a priori</i> Laplacian operator <span><math altimg=\"e","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"153 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-23DOI: 10.1142/s1230161223500221
M. A. Cruz de la Rosa, J. C. García, F. Guererro-Poblete, A. Hernández
We study the deviation from equilibrium with respect to a special class of states, the so called uniform and completely nonequilibrium, which were introduced and characterized in [11]. We compute explicitly such a deviation, we obtain an equivalent expression in terms of circulant matrices and give a bound for it. Finally, as an example, we make explicit computations in the three level case.
{"title":"Deviation from Equilibrium of QMS of Weak Coupling Limit Type with Respect to Uniform and Completely Nonequilibrium Invariant States","authors":"M. A. Cruz de la Rosa, J. C. García, F. Guererro-Poblete, A. Hernández","doi":"10.1142/s1230161223500221","DOIUrl":"https://doi.org/10.1142/s1230161223500221","url":null,"abstract":"<p>We study the deviation from equilibrium with respect to a special class of states, the so called uniform and completely nonequilibrium, which were introduced and characterized in [11]. We compute explicitly such a deviation, we obtain an equivalent expression in terms of circulant matrices and give a bound for it. Finally, as an example, we make explicit computations in the three level case.</p>","PeriodicalId":54681,"journal":{"name":"Open Systems & Information Dynamics","volume":"39 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140156282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}