Industrial Process and Modern Technical Adaptations for Nylon 6 Monomer Caprolactam: A Mini Review

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science-medziagotyra Pub Date : 2023-10-03 DOI:10.5755/j02.ms.34061
Jing HUANG, Qimin LIU, Wangcheng WU, Yuehong MA, Jianhui HUANG
{"title":"Industrial Process and Modern Technical Adaptations for Nylon 6 Monomer Caprolactam: A Mini Review","authors":"Jing HUANG, Qimin LIU, Wangcheng WU, Yuehong MA, Jianhui HUANG","doi":"10.5755/j02.ms.34061","DOIUrl":null,"url":null,"abstract":"Caprolactam is in high demand in the new materials industry as a monomer for nylon and polyamides. Although the schemes of traditional processes such as hydroxylamine production (hydroxylamine sulphate oxime process, hydroxylamine phosphate oxime process, nitric oxide reduction process) and cyclohexanone production were still involved in the caprolactam production industry, the modern technical adaptations achieved higher atomic utilisation and higher selectivity. In this review, the basic traditional schemes for the production of caprolactam are for the first time presented. The modern technical adaptation, the rectification dehydrogenation of the by-product cyclohexane in cyclohexanone production, was highlighted to achieve an increase in atomic utilisation from 78 % to 98 %. The higher selectivity achieved with membrane separation resulted in a conversion of cyclohexanone of > 99.6 % and a selectivity of cyclohexanone oxime of > 99.5 %. In addition, the progress of the catalysts used in the modern technical adaptation was briefly discussed. This review highlights the modern process with atom economy and high selectivity.","PeriodicalId":18298,"journal":{"name":"Materials Science-medziagotyra","volume":"46 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-medziagotyra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j02.ms.34061","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Caprolactam is in high demand in the new materials industry as a monomer for nylon and polyamides. Although the schemes of traditional processes such as hydroxylamine production (hydroxylamine sulphate oxime process, hydroxylamine phosphate oxime process, nitric oxide reduction process) and cyclohexanone production were still involved in the caprolactam production industry, the modern technical adaptations achieved higher atomic utilisation and higher selectivity. In this review, the basic traditional schemes for the production of caprolactam are for the first time presented. The modern technical adaptation, the rectification dehydrogenation of the by-product cyclohexane in cyclohexanone production, was highlighted to achieve an increase in atomic utilisation from 78 % to 98 %. The higher selectivity achieved with membrane separation resulted in a conversion of cyclohexanone of > 99.6 % and a selectivity of cyclohexanone oxime of > 99.5 %. In addition, the progress of the catalysts used in the modern technical adaptation was briefly discussed. This review highlights the modern process with atom economy and high selectivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尼龙6单体己内酰胺的工业工艺和现代技术改造综述
己内酰胺作为尼龙和聚酰胺的单体,在新材料工业中需求量很大。虽然传统工艺方案,如羟胺生产(硫酸羟胺肟法、磷酸羟胺肟法、一氧化氮还原法)和环己酮生产仍然涉及到己内酰胺生产工业,现代技术改造实现了更高的原子利用率和更高的选择性。本文首次介绍了己内酰胺生产的基本传统工艺方案。重点介绍了环己酮生产副产物环己烷的精馏脱氢技术,使原子利用率从78%提高到98%。膜分离获得了更高的选择性,导致环己酮的转化;对环己酮肟的选择性为99.6%;99.5%。此外,还简要讨论了催化剂在现代技术改造中的应用进展。本文重点介绍了具有原子经济性和高选择性的现代工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science-medziagotyra
Materials Science-medziagotyra 工程技术-材料科学:综合
CiteScore
1.70
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: It covers the fields of materials science concerning with the traditional engineering materials as well as advanced materials and technologies aiming at the implementation and industry applications. The variety of materials under consideration, contributes to the cooperation of scientists working in applied physics, chemistry, materials science and different fields of engineering.
期刊最新文献
The Effect of Self-Healing Microorganism-Encapsulating Concrete on Enhancing Concrete Compressive Strength Fabrication of Functional Coating Layer for Emerging Transparent Electrodes using Antimony Tin Oxide Nano-colloid Fabrication of High-Performance Insulated Metal Substrates Employing h-BN Mixture/Epoxy Composite Coated on Roughened Copper Plate Performance and Phase Change Kinetic Investigations on Capric-Myristic Acid Eutectic Mixtures for Energy-Saving Construction The Photocatalytic Activity of the Bi2O3-B2O3-ZnO-TiO2 Glass Coating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1