Molecular Cartography of a Hawaiian Coral Assemblage

IF 2.1 3区 生物学 Q2 BIODIVERSITY CONSERVATION Diversity-Basel Pub Date : 2023-10-03 DOI:10.3390/d15101061
Joseph W. P. Nakoa, John H. R. Burns, Kanoelani Steward, Lauren M. Kapono, Clifford A. Kapono
{"title":"Molecular Cartography of a Hawaiian Coral Assemblage","authors":"Joseph W. P. Nakoa, John H. R. Burns, Kanoelani Steward, Lauren M. Kapono, Clifford A. Kapono","doi":"10.3390/d15101061","DOIUrl":null,"url":null,"abstract":"Coral reefs are declining due to multiple factors including overfishing, anthropogenic pollution, and ocean acidification. Diseases affecting corals have increased in recent decades, yet the etiology of nearly all diseases remains poorly understood. Here, we investigated three-dimensionally mapped molecules and microbes from healthy and diseased coral tissue sampled across the landscape of a coral assemblage at the Wai‘ōpae tide pools, Southeast Hawai‘i Island. A 3D molecular cartographic platform was used in combination with molecular networking tools to characterize healthy coral tissue and tissue affected by the disease growth anomaly (GA). Tissues of healthy Montipora flabellata and Montipora capitata exhibited higher microbial diversity compared to Porites lobata and GA-affected M. capitata corals. Increases in relative abundance of Ulvophyceae and sterols were observed in GA lesions, while chlorophyll decreased. Conversely, healthy coral tissues were characterized by the presence of cyanobacteria in the order of Stramenopiles, in addition to higher relative chlorophyll levels. Leveraging innovative molecular cartography provides new insight into molecular characteristics of coral colonies, and helps to better understand how diseases affect the molecular landscape of corals.","PeriodicalId":56006,"journal":{"name":"Diversity-Basel","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diversity-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/d15101061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Coral reefs are declining due to multiple factors including overfishing, anthropogenic pollution, and ocean acidification. Diseases affecting corals have increased in recent decades, yet the etiology of nearly all diseases remains poorly understood. Here, we investigated three-dimensionally mapped molecules and microbes from healthy and diseased coral tissue sampled across the landscape of a coral assemblage at the Wai‘ōpae tide pools, Southeast Hawai‘i Island. A 3D molecular cartographic platform was used in combination with molecular networking tools to characterize healthy coral tissue and tissue affected by the disease growth anomaly (GA). Tissues of healthy Montipora flabellata and Montipora capitata exhibited higher microbial diversity compared to Porites lobata and GA-affected M. capitata corals. Increases in relative abundance of Ulvophyceae and sterols were observed in GA lesions, while chlorophyll decreased. Conversely, healthy coral tissues were characterized by the presence of cyanobacteria in the order of Stramenopiles, in addition to higher relative chlorophyll levels. Leveraging innovative molecular cartography provides new insight into molecular characteristics of coral colonies, and helps to better understand how diseases affect the molecular landscape of corals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
夏威夷珊瑚组合的分子制图
由于过度捕捞、人为污染和海洋酸化等多种因素,珊瑚礁正在减少。近几十年来,影响珊瑚的疾病有所增加,但几乎所有疾病的病因仍然知之甚少。在这里,我们研究了夏威夷岛东南部Wai ' ōpae潮汐池珊瑚组合景观中健康和患病珊瑚组织样本的三维分子和微生物。结合分子网络工具,使用3D分子制图平台来表征健康珊瑚组织和受疾病生长异常(GA)影响的组织。健康黄斑蒙pora和受ga影响的蒙tipora capitata珊瑚组织中微生物多样性高于无纹蒙porite lobata和受ga影响的蒙tipora capitata珊瑚。在赤霉病灶中,叶绿素含量降低,叶绿素和甾醇的相对丰度增加。相反,健康的珊瑚组织的特点是,除了相对较高的叶绿素水平外,还存在层叠菌的蓝藻。利用创新的分子制图技术,可以深入了解珊瑚群落的分子特征,并有助于更好地了解疾病如何影响珊瑚的分子景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Diversity-Basel
Diversity-Basel Environmental Science-Ecological Modeling
CiteScore
3.40
自引率
12.50%
发文量
925
审稿时长
11 weeks
期刊介绍: Diversity (ISSN 1424-2818) is an international and interdisciplinary journal of science concerning diversity concept and application, diversity assessment and diversity preservation. It is focused on organismic and molecular diversity. It publishes reviews, regular research papers and short notes in the regular issues. Related news and announcements are also published. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. Full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Teeth Enamel Ultrastructural Analysis of Selected Equidae Taxa Diving into Diversity: Copepod Crustaceans in Octocoral Associations Emerging Technologies for the Discovery of Novel Diversity in Cyanobacteria and Algae and the Elucidation of Their Valuable Metabolites Normalized Difference Vegetation Index as a Proxy of Urban Bird Species Presence and Distribution at Different Spatial Scales Seasonal Variation in the Organization of Dung Beetle Communities in the Moroccan Middle Atlas (Coleoptera: Scarabaeoidea)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1