Maoyi Yi , Jie Li , Mengran Wang , Xinming Fan , Bo Hong , Zhian Zhang , Aonan Wang , Yanqing Lai
{"title":"In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries","authors":"Maoyi Yi , Jie Li , Mengran Wang , Xinming Fan , Bo Hong , Zhian Zhang , Aonan Wang , Yanqing Lai","doi":"10.1016/j.jechem.2023.09.046","DOIUrl":null,"url":null,"abstract":"<div><p>The poor electrochemical performance of all-solid-state batteries (ASSBs), which is assemblied by Ni-rich cathode and poly(ethylene oxide) (PEO)-based electrolytes, can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode. Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode. However, these methods can hardly achieve simplicity and high efficiency simultaneously. In this work, polyacrylic acid (PAA) replaced traditional PVDF as a binder for cathode, which can achieve a uniform PAA-Li (Li<em><sub>x</sub></em>PAA (0 < <em>x</em> ≤ 1)) coating layer on the surface of single-crystal LiNi<sub>0.83</sub>Co<sub>0.12</sub>Mn<sub>0.05</sub>O<sub>2</sub> (SC-NCM83) due to H<sup>+</sup>/Li<sup>+</sup> exchange reaction during the initial charging-discharging process. The formation of PAA-Li coating layer on cathode can promote interfacial Li<sup>+</sup> transport and enhance the stability of the cathodic interface. Furthermore, the partially-protonated surface of SC-NCM83 casued by H<sup>+</sup>/Li<sup>+</sup> exchange reaction can restrict Ni ions transport to enhance the crystal structure stability. The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92% compared with that (57.3%) of SC-NCM83-polyvinylidene difluoride (PVDF) after 200 cycles. This work provides a practical strategy to construct high-performance cathodes for ASSBs.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 137-143"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005661","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The poor electrochemical performance of all-solid-state batteries (ASSBs), which is assemblied by Ni-rich cathode and poly(ethylene oxide) (PEO)-based electrolytes, can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode. Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode. However, these methods can hardly achieve simplicity and high efficiency simultaneously. In this work, polyacrylic acid (PAA) replaced traditional PVDF as a binder for cathode, which can achieve a uniform PAA-Li (LixPAA (0 < x ≤ 1)) coating layer on the surface of single-crystal LiNi0.83Co0.12Mn0.05O2 (SC-NCM83) due to H+/Li+ exchange reaction during the initial charging-discharging process. The formation of PAA-Li coating layer on cathode can promote interfacial Li+ transport and enhance the stability of the cathodic interface. Furthermore, the partially-protonated surface of SC-NCM83 casued by H+/Li+ exchange reaction can restrict Ni ions transport to enhance the crystal structure stability. The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92% compared with that (57.3%) of SC-NCM83-polyvinylidene difluoride (PVDF) after 200 cycles. This work provides a practical strategy to construct high-performance cathodes for ASSBs.