Pub Date : 2023-11-17DOI: 10.1016/j.jechem.2023.11.006
Hongxing Yuan, Wei Gao, Xinhao Wan, Jianqi Ye, Dan Wen
The sluggish kinetics of the oxygen reduction reaction (ORR) is the bottleneck for various electrochemical energy conversion devices. Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts. Here, the surface electronic structure of Pt-based noble metal aerogels (NMAs) was modulated by various organic ligands, among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis. Theoretical calculations suggested the smaller energy barrier for the transformation of O* to OH* and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals, thus enhancing the ORR intrinsic activity. Both Pt3Ni and PtPd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media. Remarkably, the 4-methylphenylene modified PtPd aerogel exhibited the higher half-wave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C. This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.
{"title":"Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction","authors":"Hongxing Yuan, Wei Gao, Xinhao Wan, Jianqi Ye, Dan Wen","doi":"10.1016/j.jechem.2023.11.006","DOIUrl":"https://doi.org/10.1016/j.jechem.2023.11.006","url":null,"abstract":"<div><p>The sluggish kinetics of the oxygen reduction reaction (ORR) is the bottleneck for various electrochemical energy conversion devices. Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts. Here, the surface electronic structure of Pt-based noble metal aerogels (NMAs) was modulated by various organic ligands, among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis. Theoretical calculations suggested the smaller energy barrier for the transformation of O* to OH* and downshift the <em>d</em>-band center of Pt due to the interaction between 4-methylphenylene and the surface metals, thus enhancing the ORR intrinsic activity. Both Pt<sub>3</sub>Ni and PtPd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media. Remarkably, the 4-methylphenylene modified PtPd aerogel exhibited the higher half-wave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C. This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 557-564"},"PeriodicalIF":13.1,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138453507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-14DOI: 10.1016/j.jechem.2023.10.058
Liangwei Hu , Junzhu Yang , Qi Xia , Jin Zhang , Hongxin Zhao , Yuan Lu
The unabated carbon dioxide (CO2) emission into the atmosphere has exacerbated global climate change, resulting in extreme weather events, biodiversity loss, and an intensified greenhouse effect. To address these challenges and work toward carbon (C) neutrality and reduced CO2 emissions, the capture and utilization of CO2 have become imperative in both scientific research and industry. One cutting-edge approach to achieving efficient catalytic performance involves integrating green bioconversion and chemical conversion. This innovative strategy offers several advantages, including environmental friendliness, high efficiency, and multi-selectivity. This study provides a comprehensive review of existing technical routes for carbon sequestration (CS) and introduces two novel CS pathways: the electrochemical-biological hybrid and artificial photosynthesis systems. It also thoroughly examines the synthesis of valuable Cn products from the two CS systems employing different catalysts and biocatalysts. As both systems heavily rely on electron transfer, direct and mediated electron transfer has been discussed and summarized in detail. Additionally, this study explores the conditions suitable for different catalysts and assesses the strengths and weaknesses of biocatalysts. We also explored the biocompatibility of the electrode materials and developed novel materials. These materials were specifically engineered to combine with enzymes or microbial cells to solve the biocompatibility problem, while improving the electron transfer efficiency of both. Furthermore, this review summarizes the relevant systems developed in recent years for manufacturing different products, along with their respective production efficiencies, providing a solid database for development in this direction. The novel chemical-biological combination proposed herein holds great promise for the future conversion of CO2 into advanced organic compounds. Additionally, it offers exciting prospects for utilizing CO2 in synthesizing a wide range of industrial products. Ultimately, the present study provides a unique perspective for achieving the vital goals of “peak shaving” and C-neutrality, contributing significantly to our collective efforts to combat climate change and its associated challenges.
{"title":"Chemico-biological conversion of carbon dioxide","authors":"Liangwei Hu , Junzhu Yang , Qi Xia , Jin Zhang , Hongxin Zhao , Yuan Lu","doi":"10.1016/j.jechem.2023.10.058","DOIUrl":"10.1016/j.jechem.2023.10.058","url":null,"abstract":"<div><p>The unabated carbon dioxide (CO<sub>2</sub>) emission into the atmosphere has exacerbated global climate change, resulting in extreme weather events, biodiversity loss, and an intensified greenhouse effect. To address these challenges and work toward carbon (C) neutrality and reduced CO<sub>2</sub> emissions, the capture and utilization of CO<sub>2</sub> have become imperative in both scientific research and industry. One cutting-edge approach to achieving efficient catalytic performance involves integrating green bioconversion and chemical conversion. This innovative strategy offers several advantages, including environmental friendliness, high efficiency, and multi-selectivity. This study provides a comprehensive review of existing technical routes for carbon sequestration (CS) and introduces two novel CS pathways: the electrochemical-biological hybrid and artificial photosynthesis systems. It also thoroughly examines the synthesis of valuable C<em><sub>n</sub></em> products from the two CS systems employing different catalysts and biocatalysts. As both systems heavily rely on electron transfer, direct and mediated electron transfer has been discussed and summarized in detail. Additionally, this study explores the conditions suitable for different catalysts and assesses the strengths and weaknesses of biocatalysts. We also explored the biocompatibility of the electrode materials and developed novel materials. These materials were specifically engineered to combine with enzymes or microbial cells to solve the biocompatibility problem, while improving the electron transfer efficiency of both. Furthermore, this review summarizes the relevant systems developed in recent years for manufacturing different products, along with their respective production efficiencies, providing a solid database for development in this direction. The novel chemical-biological combination proposed herein holds great promise for the future conversion of CO<sub>2</sub> into advanced organic compounds. Additionally, it offers exciting prospects for utilizing CO<sub>2</sub> in synthesizing a wide range of industrial products. Ultimately, the present study provides a unique perspective for achieving the vital goals of “peak shaving” and C-neutrality, contributing significantly to our collective efforts to combat climate change and its associated challenges.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 371-387"},"PeriodicalIF":13.1,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135763967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1016/j.jechem.2023.10.055
Weibin Chen , Yanhui Song , Lei Li , Junjie Guo , Zhan Lin
Exploring effective iridium (Ir)-based electrocatalysts with stable iridium centers is highly desirable for oxygen evolution reaction (OER). Herein, we regulated the incorporation manner of Ir in Co3O4 support to stabilize the Ir sites for effective OER. When anchored on the surface of Co3O4 in the form of Ir(OH)6 species, the created Ir-OH-Co interface leads to a limited stability and poor acidic OER due to Ir leaching. When doped into Co3O4 lattice, the analyses of X-ray absorption spectroscopy, in-situ Raman, and OER measurements show that the partially replacement of Co in Co3O4 by Ir atoms inclines to cause strong electronic effect and activate lattice oxygen in the presence of Ir-O-Co interface, and simultaneously master the reconstruction effect to mitigate Ir dissolution, realizing the improved OER activity and stability in alkaline and acidic environments. As a result, Irlat@Co3O4 with Ir loading of 3.67 wt% requires 294 ± 4 mV / 285 ± 3 mV and 326 ± 2 mV to deliver 10 mA cm−2 in alkaline (0.1 M KOH / 1.0 M KOH) and acidic (0.5 M H2SO4) solution, respectively, with good stability.
探索具有稳定铱中心的有效铱基电催化剂是析氧反应(OER)的迫切需要。本文中,我们调节了Ir在Co3O4载体中的掺入方式,以稳定Ir位点以实现有效的OER。当以Ir(OH)6的形式锚定在Co3O4表面时,形成的Ir-OH- co界面由于Ir浸出导致稳定性有限,酸性OER较差。当掺杂到Co3O4晶格中时,x射线吸收光谱、原位拉曼和OER测量分析表明,在存在Ir- o -Co界面的情况下,Co3O4中的Co被Ir原子部分取代,倾向于产生强烈的电子效应,激活晶格氧,同时掌握了Ir溶解的重建效应,实现了在碱性和酸性环境下OER活性和稳定性的提高。结果表明,当Ir负载为3.67 wt%时,Irlat@Co3O4在碱性(0.1 M KOH / 1.0 M KOH)和酸性(0.5 M H2SO4)溶液中分别需要294±4 mV / 285±3 mV和326±2 mV才能输送10 mA cm - 2,且稳定性良好。
{"title":"Stabilizing iridium sites via interface and reconstruction regulations for water oxidation in alkaline and acidic media","authors":"Weibin Chen , Yanhui Song , Lei Li , Junjie Guo , Zhan Lin","doi":"10.1016/j.jechem.2023.10.055","DOIUrl":"10.1016/j.jechem.2023.10.055","url":null,"abstract":"<div><p>Exploring effective iridium (Ir)-based electrocatalysts with stable iridium centers is highly desirable for oxygen evolution reaction (OER). Herein, we regulated the incorporation manner of Ir in Co<sub>3</sub>O<sub>4</sub> support to stabilize the Ir sites for effective OER. When anchored on the surface of Co<sub>3</sub>O<sub>4</sub> in the form of Ir(OH)<sub>6</sub> species, the created Ir-OH-Co interface leads to a limited stability and poor acidic OER due to Ir leaching. When doped into Co<sub>3</sub>O<sub>4</sub> lattice, the analyses of X-ray absorption spectroscopy, in-situ Raman, and OER measurements show that the partially replacement of Co in Co<sub>3</sub>O<sub>4</sub> by Ir atoms inclines to cause strong electronic effect and activate lattice oxygen in the presence of Ir-O-Co interface, and simultaneously master the reconstruction effect to mitigate Ir dissolution, realizing the improved OER activity and stability in alkaline and acidic environments. As a result, Ir<sub>lat</sub>@Co<sub>3</sub>O<sub>4</sub> with Ir loading of 3.67 wt% requires 294 ± 4 mV / 285 ± 3 mV and 326 ± 2 mV to deliver 10 mA cm<sup>−2</sup> in alkaline (0.1 M KOH / 1.0 M KOH) and acidic (0.5 M H<sub>2</sub>SO<sub>4</sub>) solution, respectively, with good stability.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 355-363"},"PeriodicalIF":13.1,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135565716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1016/j.jechem.2023.10.053
Fazheng Qiu , Ming-Hua Li , Jinpeng Wu , Jin-Song Hu
CsPbI2Br perovskite solar cells (PSCs) have drawn tremendous attention due to their suitable bandgap, excellent photothermal stability, and great potential as an ideal candidate for top cells in tandem solar cells. However, the abundant defects at the buried interface and perovskite layer induce severe charge recombination, resulting in the open-circuit voltage (Voc) output and stability much lower than anticipated. Herein, a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI2Br defects by introducing ammonium tetrafluoroborate (NH4BF4), thereby resulting in both high CsPbI2Br crystallization and minimized interfacial energy losses. Specifically, NH4+ ions could preferentially heal hydroxyl groups on the SnO2 surface and balance energy level alignment between SnO2 and CsPbI2Br, enhancing charge transport efficiency, while BF4− anions as a quasi-halogen regulate crystal growth of CsPbI2Br, thus reducing perovskite defects. Additionally, it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI2Br for strengthening the phase stability. As a result, the optimized CsPbI2Br PSCs realize a remarkable efficiency of 17.09% and an ultrahigh Voc output of 1.43 V, which is one of the highest values for CsPbI2Br PSCs.
{"title":"Buried interface management via bifunctional NH4BF4 towards efficient CsPbI2Br solar cells with a Voc over 1.4 V","authors":"Fazheng Qiu , Ming-Hua Li , Jinpeng Wu , Jin-Song Hu","doi":"10.1016/j.jechem.2023.10.053","DOIUrl":"10.1016/j.jechem.2023.10.053","url":null,"abstract":"<div><p>CsPbI<sub>2</sub>Br perovskite solar cells (PSCs) have drawn tremendous attention due to their suitable bandgap, excellent photothermal stability, and great potential as an ideal candidate for top cells in tandem solar cells. However, the abundant defects at the buried interface and perovskite layer induce severe charge recombination, resulting in the open-circuit voltage (<em>V</em><sub>oc</sub>) output and stability much lower than anticipated. Herein, a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI<sub>2</sub>Br defects by introducing ammonium tetrafluoroborate (NH<sub>4</sub>BF<sub>4</sub>), thereby resulting in both high CsPbI<sub>2</sub>Br crystallization and minimized interfacial energy losses. Specifically, NH<sub>4</sub><sup>+</sup> ions could preferentially heal hydroxyl groups on the SnO<sub>2</sub> surface and balance energy level alignment between SnO<sub>2</sub> and CsPbI<sub>2</sub>Br, enhancing charge transport efficiency, while BF<sub>4</sub><sup>−</sup> anions as a quasi-halogen regulate crystal growth of CsPbI<sub>2</sub>Br, thus reducing perovskite defects. Additionally, it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI<sub>2</sub>Br for strengthening the phase stability. As a result, the optimized CsPbI<sub>2</sub>Br PSCs realize a remarkable efficiency of 17.09% and an ultrahigh <em>V</em><sub>oc</sub> output of 1.43 V, which is one of the highest values for CsPbI<sub>2</sub>Br PSCs.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 364-370"},"PeriodicalIF":13.1,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135566229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1016/j.jechem.2023.10.054
Nanping Deng , Xiaofan Feng , Yongbing Jin , Zhaozhao Peng , Yang Feng , Ying Tian , Yong Liu , Lu Gao , Weimin Kang , Bowen Cheng
Lithium-sulfur battery (LSB) has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems. The widely commercial application and development of LSB is mainly hindered by serious “shuttle effect” of lithium polysulfides (LiPSs), slow reaction kinetics, notorious lithium dendrites, etc. In various structures of LSB materials, array structured materials, possessing the composition of ordered micro units with the same or similar characteristics of each unit, present excellent application potential for various secondary cells due to some merits such as immobilization of active substances, high specific surface area, appropriate pore sizes, easy modification of functional material surface, accommodated huge volume change, enough facilitated transportation for electrons/lithium ions, and special functional groups strongly adsorbing LiPSs. Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above. In this review, recent progresses and developments on array structured materials applied in LSBs including preparation ways, collaborative structural designs based on array structures, and action mechanism analyses in improving electrochemical performance and safety are summarized. Meanwhile, we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances. Lastly, some directions and prospects about preparation ways, functional modifications, and practical applications of array structured materials in LSBs are generalized. We hope the review can attract more researchers' attention and bring more studying on array structured materials for other secondary batteries including LSB.
{"title":"Design, preparation, application of advanced array structured materials and their action mechanism analyses for high performance lithium-sulfur batteries","authors":"Nanping Deng , Xiaofan Feng , Yongbing Jin , Zhaozhao Peng , Yang Feng , Ying Tian , Yong Liu , Lu Gao , Weimin Kang , Bowen Cheng","doi":"10.1016/j.jechem.2023.10.054","DOIUrl":"10.1016/j.jechem.2023.10.054","url":null,"abstract":"<div><p><span>Lithium-sulfur battery<span> (LSB) has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation </span></span>energy storage systems<span><span><span>. The widely commercial application and development of LSB is mainly hindered by serious “shuttle effect” of lithium polysulfides (LiPSs), slow reaction kinetics, notorious </span>lithium dendrites, etc. In various structures of LSB materials, array structured materials, possessing the composition of ordered micro units with the same or similar characteristics of each unit, present excellent application potential for various secondary cells due to some merits such as </span>immobilization of active substances, high specific surface area, appropriate pore sizes, easy modification of functional material surface, accommodated huge volume change, enough facilitated transportation for electrons/lithium ions, and special functional groups strongly adsorbing LiPSs. Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above. In this review, recent progresses and developments on array structured materials applied in LSBs including preparation ways, collaborative structural designs based on array structures, and action mechanism analyses in improving electrochemical performance and safety are summarized. Meanwhile, we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances. Lastly, some directions and prospects about preparation ways, functional modifications, and practical applications of array structured materials in LSBs are generalized. We hope the review can attract more researchers' attention and bring more studying on array structured materials for other secondary batteries including LSB.</span></p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 266-303"},"PeriodicalIF":13.1,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135609005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-10DOI: 10.1016/j.jechem.2023.10.056
Zhongwei Deng , Le Xu , Hongao Liu , Xiaosong Hu , Bing Wang , Jingjing Zhou
For large-scale in-service electric vehicles (EVs) that undergo potential maintenance, second-hand transactions, and retirement, it is crucial to rapidly evaluate the health status of their battery packs. However, existing methods often rely on lengthy battery charging/discharging data or extensive training samples, which hinders their implementation in practical scenarios. To address this issue, a rapid health estimation method based on short-time charging data and limited labels for in-service battery packs is proposed in this paper. First, a digital twin of battery pack is established to emulate its dynamic behavior across various aging levels and inconsistency degrees. Then, increment capacity sequences (△Q) within a short voltage span are extracted from charging process to indicate battery health. Furthermore, data-driven models based on deep convolutional neural network (DCNN) are constructed to estimate battery state of health (SOH), where the synthetic data is employed to pre-train the models, and transfer learning strategies by using fine-tuning and domain adaptation are utilized to enhance the model adaptability. Finally, field data of 10 EVs exhibiting different SOHs are used to verify the proposed methods. By using the △Q with 100 mV voltage change, the SOH of battery packs can be accurately estimated with an error around 3.2%.
{"title":"Rapid health estimation of in-service battery packs based on limited labels and domain adaptation","authors":"Zhongwei Deng , Le Xu , Hongao Liu , Xiaosong Hu , Bing Wang , Jingjing Zhou","doi":"10.1016/j.jechem.2023.10.056","DOIUrl":"10.1016/j.jechem.2023.10.056","url":null,"abstract":"<div><p>For large-scale in-service electric vehicles (EVs) that undergo potential maintenance, second-hand transactions, and retirement, it is crucial to rapidly evaluate the health status of their battery packs. However, existing methods often rely on lengthy battery charging/discharging data or extensive training samples, which hinders their implementation in practical scenarios. To address this issue, a rapid health estimation method based on short-time charging data and limited labels for in-service battery packs is proposed in this paper. First, a digital twin of battery pack is established to emulate its dynamic behavior across various aging levels and inconsistency degrees. Then, increment capacity sequences (△<strong><em>Q</em></strong><span>) within a short voltage span are extracted from charging process to indicate battery health. Furthermore, data-driven models based on deep convolutional neural network (DCNN) are constructed to estimate battery state of health (SOH), where the synthetic data is employed to pre-train the models, and transfer learning strategies by using fine-tuning and domain adaptation are utilized to enhance the model adaptability. Finally, field data of 10 EVs exhibiting different SOHs are used to verify the proposed methods. By using the △</span><strong><em>Q</em></strong> with 100 mV voltage change, the SOH of battery packs can be accurately estimated with an error around 3.2%.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 345-354"},"PeriodicalIF":13.1,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135609376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite the presence of LiF components in the solid electrolyte interphase (SEI) formed on the graphite anode surface by conventional electrolyte, these LiF components primarily exist in an amorphous state, rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte. Consequently, nearly all lithium ions within the SEI film are replaced by transition metal ions, resulting in an increase in interphacial impedance and a decrease in stability. Herein, we demonstrate that the SEI film, constructed by fluoroethylene carbonate (FEC) additive rich in crystalline LiF, effectively inhibits the undesired Li+/Co2+ ion exchange reaction, thereby suppressing the deposition of cobalt compounds and metallic cobalt. Furthermore, the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode. Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions, providing valuable guidance for designing next-generation electrolytes.
{"title":"Suppression of Co(II) ion deposition and hazards: Regulation of SEI film composition and structure","authors":"Jiaqi Zhan, Mingzhu Liu, Yutian Xie, Jiarong He, Hebing Zhou, Lidan Xing, Weishan Li","doi":"10.1016/j.jechem.2023.10.051","DOIUrl":"10.1016/j.jechem.2023.10.051","url":null,"abstract":"<div><p>Despite the presence of LiF components in the solid electrolyte interphase (SEI) formed on the graphite anode surface by conventional electrolyte, these LiF components primarily exist in an amorphous state, rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte. Consequently, nearly all lithium ions within the SEI film are replaced by transition metal ions, resulting in an increase in interphacial impedance and a decrease in stability. Herein, we demonstrate that the SEI film, constructed by fluoroethylene carbonate (FEC) additive rich in crystalline LiF, effectively inhibits the undesired Li<sup>+</sup>/Co<sup>2+</sup> ion exchange reaction, thereby suppressing the deposition of cobalt compounds and metallic cobalt. Furthermore, the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode. Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions, providing valuable guidance for designing next-generation electrolytes.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 259-265"},"PeriodicalIF":13.1,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135609009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.1016/j.jechem.2023.10.047
Jie Zeng , Jian Bao , Ya Zhang , Xun-Lu Li , Cui Ma , Rui-Jie Luo , Chong-Yu Du , Xuan Xu , Zhe Mei , Zhe Qian , Yong-Ning Zhou
The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability. Oxygen redox can contribute extra capacity to increase energy density, but results in lattice instability and capacity fading caused by lattice oxygen gliding and oxygen release. In this work, reversible Mn2+/Mn4+ redox is realized in a P3-Na0.65Li0.2Co0.05Mn0.75O2 cathode material with high specific capacity and structure stability via Co substitution. The contribution of oxygen redox is suppressed significantly by reversible Mn2+/Mn4+ redox without sacrificing capacity, thus reducing lattice oxygen release and improving the structure stability. Synchrotron X-ray techniques reveal that P3 phase is well maintained in a wide voltage window of 1.5–4.5 V vs. Na+/Na even at 10 C and after long-term cycling. It is disclosed that charge compensation from Co/Mn-ions contributes to the voltage region below 4.2 V and O-ions contribute to the whole voltage range. The synergistic contributions of Mn2+/Mn4+, Co2+/Co3+, and O2−/(On)2− redox in P3-Na0.65Li0.2Co0.05Mn0.75O2 lead to a high reversible capacity of 215.0 mA h g−1 at 0.1 C with considerable cycle stability. The strategy opens up new opportunities for the design of high capacity cathode materials for rechargeable batteries.
层状结构正极材料中阳离子氧化还原和氧氧化还原之间的平衡是钠电池获得高能量密度和良好循环稳定性的重要问题。氧氧化还原可以提供额外的容量来增加能量密度,但会导致晶格不稳定和晶格氧滑动和氧释放引起的容量衰退。本研究通过Co取代,在具有高比容量和结构稳定的P3-Na0.65Li0.2Co0.05Mn0.75O2正极材料中实现了Mn2+/Mn4+的可逆氧化还原。可逆的Mn2+/Mn4+氧化还原在不牺牲容量的情况下显著抑制了氧氧化还原的贡献,从而减少了晶格氧释放,提高了结构的稳定性。同步加速器x射线技术表明,即使在10℃和长期循环后,P3相在1.5-4.5 V vs. Na+/Na的宽电压窗下也能很好地保持。Co/ mn离子的电荷补偿作用在4.2 V以下电压区域,o离子的电荷补偿作用在整个电压范围。在P3-Na0.65Li0.2Co0.05Mn0.75O2中,Mn2+/Mn4+、Co2+/Co3+和O2−/(On)2−氧化还原的协同作用使其在0.1℃下具有215.0 mA h g−1的高可逆容量,并具有良好的循环稳定性。该策略为可充电电池的高容量正极材料的设计开辟了新的机会。
{"title":"Reversible Mn2+/Mn4+ double-electron redox in P3-type layer-structured sodium-ion cathode","authors":"Jie Zeng , Jian Bao , Ya Zhang , Xun-Lu Li , Cui Ma , Rui-Jie Luo , Chong-Yu Du , Xuan Xu , Zhe Mei , Zhe Qian , Yong-Ning Zhou","doi":"10.1016/j.jechem.2023.10.047","DOIUrl":"10.1016/j.jechem.2023.10.047","url":null,"abstract":"<div><p><span>The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability. Oxygen redox can contribute extra capacity to increase energy density, but results in lattice instability and capacity fading caused by lattice oxygen gliding and oxygen release. In this work, reversible Mn</span><sup>2+</sup>/Mn<sup>4+</sup> redox is realized in a P3-Na<sub>0.65</sub>Li<sub>0.2</sub>Co<sub>0.05</sub>Mn<sub>0.75</sub>O<sub>2</sub> cathode material with high specific capacity and structure stability via Co substitution. The contribution of oxygen redox is suppressed significantly by reversible Mn<sup>2+</sup>/Mn<sup>4+</sup> redox without sacrificing capacity, thus reducing lattice oxygen release and improving the structure stability. Synchrotron X-ray techniques reveal that P3 phase is well maintained in a wide voltage window of 1.5–4.5 V vs. Na<sup>+</sup>/Na even at 10 C and after long-term cycling. It is disclosed that charge compensation from Co/Mn-ions contributes to the voltage region below 4.2 V and O-ions contribute to the whole voltage range. The synergistic contributions of Mn<sup>2+</sup>/Mn<sup>4+</sup>, Co<sup>2+</sup>/Co<sup>3+</sup>, and O<sup>2−</sup>/(O<em><sub>n</sub></em>)<sup>2−</sup> redox in P3-Na<sub>0.65</sub>Li<sub>0.2</sub>Co<sub>0.05</sub>Mn<sub>0.75</sub>O<sub>2</sub> lead to a high reversible capacity of 215.0 mA h g<sup>−1</sup> at 0.1 C with considerable cycle stability. The strategy opens up new opportunities for the design of high capacity cathode materials for rechargeable batteries.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 79-88"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.1016/j.jechem.2023.10.044
Rose Anne Acedera , Alicia Theresse Dumlao , DJ Donn Matienzo , Maricor Divinagracia , Julie Anne Paraggua , Po-Ya Abel Chuang , Joey Ocon
Transition metal phosphides (TMPs) have been regarded as alternative hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts owing to their comparable activity to those of noble metal-based catalysts. TMPs have been produced in various morphologies, including hollow and porous nanostructures, which are features deemed desirable for electrocatalytic materials. Templated synthesis routes are often responsible for such morphologies. This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods. A comprehensive review of the structure–property–performance of TMP-based HER and OER catalysts prepared using different templates is presented. The discussion proceeds according to application, first by HER and further divided among the types of templates used—from hard templates, sacrificial templates, and soft templates to the emerging dynamic hydrogen bubble template. OER catalysts are then reviewed and grouped according to their morphology. Finally, prospective research directions for the synthesis of hollow and porous TMP-based catalysts, such as improvements on both activity and stability of TMPs, design of environmentally benign templates and processes, and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations, are suggested.
{"title":"Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions","authors":"Rose Anne Acedera , Alicia Theresse Dumlao , DJ Donn Matienzo , Maricor Divinagracia , Julie Anne Paraggua , Po-Ya Abel Chuang , Joey Ocon","doi":"10.1016/j.jechem.2023.10.044","DOIUrl":"10.1016/j.jechem.2023.10.044","url":null,"abstract":"<div><p>Transition metal phosphides (TMPs) have been regarded as alternative hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts owing to their comparable activity to those of noble metal-based catalysts. TMPs have been produced in various morphologies, including hollow and porous nanostructures, which are features deemed desirable for electrocatalytic materials. Templated synthesis routes are often responsible for such morphologies. This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods. A comprehensive review of the structure–property–performance of TMP-based HER and OER catalysts prepared using different templates is presented. The discussion proceeds according to application, first by HER and further divided among the types of templates used—from hard templates, sacrificial templates, and soft templates to the emerging dynamic hydrogen bubble template. OER catalysts are then reviewed and grouped according to their morphology. Finally, prospective research directions for the synthesis of hollow and porous TMP-based catalysts, such as improvements on both activity and stability of TMPs, design of environmentally benign templates and processes, and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations, are suggested.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 646-669"},"PeriodicalIF":13.1,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1016/j.jechem.2023.10.041
Haejin Jang , Yejoon Kim , Hojoong Choi , Jiwoong Yang , Yoonsung Jung , Sungkyun Choi , Donghyeon Lee , Ho Won Jang , Sanghan Lee
BiVO4 (BVO) is a promising material as the photoanode for use in photoelectrochemical applications. However, the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance. To address this, various modifications have been attempted, including the use of ferroelectric materials. Ferroelectric materials can form a permanent polarization within the layer, enhancing the separation and transport of photo-excited electron-hole pairs. In this study, we propose a novel approach by depositing an epitaxial BiFeO3 (BFO) thin film underneath the BVO thin film (BVO/BFO) to harness the ferroelectric property of BFO. The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination. As a result, the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density (0.65 mA cm−2) at 1.23 VRHE under the illumination compared to the bare BVO photoanodes (0.18 mA cm−2), which is consistent with the increase of the applied bias photon-to-current conversion efficiencies (ABPE) and the result of electrochemical impedance spectroscopy (EIS) analysis. These results can be attributed to the self-polarization exhibited by the inserted BFO thin film, which promoted the charge separation and transfer efficiency of the BVO photoanodes.
BiVO4 (BVO)是一种很有前途的光电阳极材料。然而,BVO的高电荷复合和慢电荷转移一直是实现理想光电性能的障碍。为了解决这个问题,已经尝试了各种修改,包括使用铁电材料。铁电材料可以在层内形成永久极化,增强光激发电子-空穴对的分离和输运。在这项研究中,我们提出了一种新的方法,通过在BVO薄膜(BVO/BFO)下沉积外延BiFeO3 (BFO)薄膜来利用BFO的铁电特性。所插入的BFO薄膜的自极化同时作为缓冲层增强电荷输运和空穴阻塞层减少电荷复合。结果表明,在1.23 VRHE下,BVO/BFO光阳极的光电流密度(0.65 mA cm−2)比裸BVO光阳极(0.18 mA cm−2)高3.5倍以上,这与施加偏置光子-电流转换效率(ABPE)的提高和电化学阻抗谱(EIS)分析结果一致。这些结果可以归因于插入的BFO薄膜表现出的自极化,促进了BVO光阳极的电荷分离和转移效率。
{"title":"Enhancing BiVO4 photoanode performance by insertion of an epitaxial BiFeO3 ferroelectric layer","authors":"Haejin Jang , Yejoon Kim , Hojoong Choi , Jiwoong Yang , Yoonsung Jung , Sungkyun Choi , Donghyeon Lee , Ho Won Jang , Sanghan Lee","doi":"10.1016/j.jechem.2023.10.041","DOIUrl":"10.1016/j.jechem.2023.10.041","url":null,"abstract":"<div><p>BiVO<sub>4</sub> (BVO) is a promising material as the photoanode for use in photoelectrochemical applications. However, the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance. To address this, various modifications have been attempted, including the use of ferroelectric materials. Ferroelectric materials can form a permanent polarization within the layer, enhancing the separation and transport of photo-excited electron-hole pairs. In this study, we propose a novel approach by depositing an epitaxial BiFeO<sub>3</sub> (BFO) thin film underneath the BVO thin film (BVO/BFO) to harness the ferroelectric property of BFO. The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination. As a result, the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density (0.65 mA cm<sup>−2</sup>) at 1.23 V<sub>RHE</sub> under the illumination compared to the bare BVO photoanodes (0.18 mA cm<sup>−2</sup>), which is consistent with the increase of the applied bias photon-to-current conversion efficiencies (ABPE) and the result of electrochemical impedance spectroscopy (EIS) analysis. These results can be attributed to the self-polarization exhibited by the inserted BFO thin film, which promoted the charge separation and transfer efficiency of the BVO photoanodes.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 71-78"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135510409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}