Statistical performance of quantile tensor regression with convex regularization

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Journal of Multivariate Analysis Pub Date : 2023-11-14 DOI:10.1016/j.jmva.2023.105249
Wenqi Lu , Zhongyi Zhu , Rui Li , Heng Lian
{"title":"Statistical performance of quantile tensor regression with convex regularization","authors":"Wenqi Lu ,&nbsp;Zhongyi Zhu ,&nbsp;Rui Li ,&nbsp;Heng Lian","doi":"10.1016/j.jmva.2023.105249","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In this paper, we consider high-dimensional quantile<span> tensor regression using a general convex decomposable regularizer and analyze the statistical performances of the estimator. The rates are stated in terms of the intrinsic dimension of the estimation problem, which is, roughly speaking, the dimension of the smallest subspace that contains the true coefficient. Previously, convex regularized tensor regression has been studied with a least squares loss, Gaussian tensorial predictors and Gaussian errors, with rates that depend on the Gaussian width of a convex set. Our results extend the previous work to nonsmooth quantile loss. To deal with the non-Gaussian setting, we use the concept of </span></span>Rademacher<span><span> complexity with appropriate concentration inequalities instead of the Gaussian width. For the multi-linear nuclear norm penalty, our Orlicz norm bound for the operator norm of a random matrix may be of independent interest. We validate the theoretical guarantees in numerical experiments. We also demonstrate advantage of quantile regression over mean regression, and compare the performance of convex </span>regularization method and nonconvex </span></span>decomposition method in solving quantile tensor regression problem in simulation studies.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"200 ","pages":"Article 105249"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X23000957","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider high-dimensional quantile tensor regression using a general convex decomposable regularizer and analyze the statistical performances of the estimator. The rates are stated in terms of the intrinsic dimension of the estimation problem, which is, roughly speaking, the dimension of the smallest subspace that contains the true coefficient. Previously, convex regularized tensor regression has been studied with a least squares loss, Gaussian tensorial predictors and Gaussian errors, with rates that depend on the Gaussian width of a convex set. Our results extend the previous work to nonsmooth quantile loss. To deal with the non-Gaussian setting, we use the concept of Rademacher complexity with appropriate concentration inequalities instead of the Gaussian width. For the multi-linear nuclear norm penalty, our Orlicz norm bound for the operator norm of a random matrix may be of independent interest. We validate the theoretical guarantees in numerical experiments. We also demonstrate advantage of quantile regression over mean regression, and compare the performance of convex regularization method and nonconvex decomposition method in solving quantile tensor regression problem in simulation studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
凸正则化分位数张量回归的统计性能
本文利用一般凸可分解正则化器考虑高维分位数张量回归,并分析了该估计器的统计性能。速率是用估计问题的固有维数来表示的,粗略地说,就是包含真系数的最小子空间的维数。以前,凸正则化张量回归已经研究了最小二乘损失,高斯张量预测和高斯误差,其速率取决于凸集的高斯宽度。我们的结果将以前的工作扩展到非光滑分位数损失。为了处理非高斯设置,我们使用Rademacher复杂度的概念和适当的浓度不等式来代替高斯宽度。对于多线性核范数惩罚,随机矩阵的算子范数的Orlicz范数界可能是独立的。通过数值实验验证了理论保证。在仿真研究中,比较了凸正则化方法和非凸分解方法在求解分位数张量回归问题中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
期刊最新文献
Maximum likelihood estimation of elliptical tail Covariance parameter estimation of Gaussian processes with approximated functional inputs PDE-regularised spatial quantile regression Diagnostic checking of periodic vector autoregressive time series models with dependent errors A conditional distribution function-based measure for independence and K-sample tests in multivariate data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1