Optimizing Incident Detection Thresholds Using the A* Algorithm: An Enhanced Approach for the California Algorithm

Korn Puangnak, Manthana Tiawongsuwan
{"title":"Optimizing Incident Detection Thresholds Using the A* Algorithm: An Enhanced Approach for the California Algorithm","authors":"Korn Puangnak, Manthana Tiawongsuwan","doi":"10.37936/ecti-cit.2023174.251643","DOIUrl":null,"url":null,"abstract":"This paper presents an improved version of the California Algorithm (CA), focusing on threshold selection criteria. The CA is a widely recognized incidence detection algorithm used as a benchmark for comparison with newly developed incident detection algorithms. This study proposes criteria for threshold selection in CA based on the A* algorithm, which aims to find optimal thresholds using a Performance Index (PI) as a cost function. Our proposed method reduces processing time by optimizing resource utilization and establishes a standard for threshold selection in CA for comparison and evaluation purposes. Experimental results from our proposed method demonstrate its effectiveness in reducing the complexity required to determine optimal thresholds. Optimization of the CA method using the A* algorithm results in a 98.68% reduction in the number of nodes searched compared to a Complete Search Tree (CST).","PeriodicalId":37046,"journal":{"name":"ECTI Transactions on Computer and Information Technology","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECTI Transactions on Computer and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37936/ecti-cit.2023174.251643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an improved version of the California Algorithm (CA), focusing on threshold selection criteria. The CA is a widely recognized incidence detection algorithm used as a benchmark for comparison with newly developed incident detection algorithms. This study proposes criteria for threshold selection in CA based on the A* algorithm, which aims to find optimal thresholds using a Performance Index (PI) as a cost function. Our proposed method reduces processing time by optimizing resource utilization and establishes a standard for threshold selection in CA for comparison and evaluation purposes. Experimental results from our proposed method demonstrate its effectiveness in reducing the complexity required to determine optimal thresholds. Optimization of the CA method using the A* algorithm results in a 98.68% reduction in the number of nodes searched compared to a Complete Search Tree (CST).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用A*算法优化事件检测阈值:加利福尼亚算法的增强方法
本文提出了加利福尼亚算法(CA)的改进版本,重点关注阈值选择标准。CA是一种被广泛认可的事件检测算法,被用作与新开发的事件检测算法进行比较的基准。本研究提出了基于A*算法的CA阈值选择标准,该算法旨在使用性能指数(PI)作为代价函数找到最佳阈值。我们提出的方法通过优化资源利用率减少了处理时间,并为CA的阈值选择建立了一个标准,用于比较和评估。实验结果表明,该方法有效地降低了确定最优阈值所需的复杂性。使用A*算法对CA方法进行优化,与完全搜索树(CST)相比,搜索的节点数量减少了98.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ECTI Transactions on Computer and Information Technology
ECTI Transactions on Computer and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
52
审稿时长
15 weeks
期刊最新文献
Model-Based Design Optimization using CDFG for Image Processing on FPGA Optimizing Incident Detection Thresholds Using the A* Algorithm: An Enhanced Approach for the California Algorithm Image Watermarking Framework using Histogram Equalization and Visual Saliency Optimized Selection of Motorcycle Battery Swapping Stations Under Flexible Demand by Using Distance Function And Gis Technique Privacy-Enhancing Data Aggregation for Big Data Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1