Displacement Calibration of Optical Tweezers With Gravitational Acceleration

IF 5 2区 物理与天体物理 Q1 INSTRUMENTS & INSTRUMENTATION Photonic Sensors Pub Date : 2023-10-14 DOI:10.1007/s13320-023-0687-8
Jianyu Yang, Nan Li, Xunmin Zhu, Ming Chen, Mian Wu, Xingfan Chen, Cheng Liu, Jian Zhuang, Huizhu Hu
{"title":"Displacement Calibration of Optical Tweezers With Gravitational Acceleration","authors":"Jianyu Yang, Nan Li, Xunmin Zhu, Ming Chen, Mian Wu, Xingfan Chen, Cheng Liu, Jian Zhuang, Huizhu Hu","doi":"10.1007/s13320-023-0687-8","DOIUrl":null,"url":null,"abstract":"Abstract In recent years, levitated particles of optical traps in vacuum have shown the enormous potential for precision sensor development and new physics exploration. However, the accuracy of the sensor is still hampered by the uncertainty of the calibration factor relating the detected signal to the absolute displacement of the trapped particle. In this paper, we suggest and experimentally demonstrate a novel calibration method for optical tweezers based on free-falling particles in vacuum, where the gravitational acceleration is introduced as an absolute reference. Our work provides a calibration protocol with a great certainty and traceability, which is significant in improving the accuracy of precision sensing based on levitated optomechanical systems.","PeriodicalId":20108,"journal":{"name":"Photonic Sensors","volume":"96 1","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonic Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13320-023-0687-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In recent years, levitated particles of optical traps in vacuum have shown the enormous potential for precision sensor development and new physics exploration. However, the accuracy of the sensor is still hampered by the uncertainty of the calibration factor relating the detected signal to the absolute displacement of the trapped particle. In this paper, we suggest and experimentally demonstrate a novel calibration method for optical tweezers based on free-falling particles in vacuum, where the gravitational acceleration is introduced as an absolute reference. Our work provides a calibration protocol with a great certainty and traceability, which is significant in improving the accuracy of precision sensing based on levitated optomechanical systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重力加速度下光镊的位移标定
近年来,真空光学阱悬浮粒子在精密传感器开发和新物理探索方面显示出巨大的潜力。然而,传感器的精度仍然受到与被捕获粒子的绝对位移有关的校准因子的不确定性的影响。本文提出并实验证明了一种基于真空中自由落体粒子的光镊标定新方法,其中引入了重力加速度作为绝对参考。我们的工作提供了一种具有高度确定性和可追溯性的校准方案,这对提高基于悬浮光学机械系统的精密传感精度具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photonic Sensors
Photonic Sensors Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
2.30%
发文量
270
审稿时长
13 weeks
期刊介绍: Photonic Sensors publishes original, peer-reviewed articles that report on new developments of interest to both the photonics and sensor communities in all fields of photonic sensing science and technology. Topics include optical fiber sensors, planar waveguide sensors, laser-based sensors, and biophotonic sensors, etc. Photonic Sensors focuses on experimental contributions related to novel principles, structures or materials for photonic sensors. Papers that report on investigations based on combinations of experimental and analytical/numerical approaches are also welcome.
期刊最新文献
On-Chip Sub-Picometer Continuous Wavelength Fiber-Bragg-Grating Interrogator Fast-Response Fiber-Optic FPI Temperature Sensing System Based on Modulated Grating Y-Branch Tunable Laser Accurate Analysis of Multi-Mode Interferometric Optical Fiber Sensor Investigation of Quantum Dot Color Filter Micro-LED Display Random Raman Fiber Laser as a Liquid Refractive Index Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1