首页 > 最新文献

Photonic Sensors最新文献

英文 中文
On-Chip Sub-Picometer Continuous Wavelength Fiber-Bragg-Grating Interrogator 片上亚微米级连续波长光纤-布拉格光栅干涉仪
IF 4.4 2区 物理与天体物理 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2024-01-02 DOI: 10.1007/s13320-023-0694-9
Zhuang Yuan, Jun Zou, Jiqiang Zhang, Lu Zhang, Jiahe Zhang, Leixin Meng, Qing Yang
{"title":"On-Chip Sub-Picometer Continuous Wavelength Fiber-Bragg-Grating Interrogator","authors":"Zhuang Yuan, Jun Zou, Jiqiang Zhang, Lu Zhang, Jiahe Zhang, Leixin Meng, Qing Yang","doi":"10.1007/s13320-023-0694-9","DOIUrl":"https://doi.org/10.1007/s13320-023-0694-9","url":null,"abstract":"","PeriodicalId":20108,"journal":{"name":"Photonic Sensors","volume":"4 4","pages":"1-12"},"PeriodicalIF":4.4,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139124765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast-Response Fiber-Optic FPI Temperature Sensing System Based on Modulated Grating Y-Branch Tunable Laser 基于调制光栅 Y 支路可调谐激光器的快速响应光纤 FPI 温度传感系统
IF 4.4 2区 物理与天体物理 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-12-02 DOI: 10.1007/s13320-023-0690-0
Yang Cheung, Zhenguo Jing, Qiang Liu, Ang Li, Yueying Liu, Yihang Guo, Sen Zhang, Dapeng Zhou, Wei Peng
{"title":"Fast-Response Fiber-Optic FPI Temperature Sensing System Based on Modulated Grating Y-Branch Tunable Laser","authors":"Yang Cheung, Zhenguo Jing, Qiang Liu, Ang Li, Yueying Liu, Yihang Guo, Sen Zhang, Dapeng Zhou, Wei Peng","doi":"10.1007/s13320-023-0690-0","DOIUrl":"https://doi.org/10.1007/s13320-023-0690-0","url":null,"abstract":"","PeriodicalId":20108,"journal":{"name":"Photonic Sensors","volume":"19 4","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138607086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate Analysis of Multi-Mode Interferometric Optical Fiber Sensor 多模干涉光纤传感器的精确分析
IF 4.4 2区 物理与天体物理 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-12-01 DOI: 10.1007/s13320-023-0701-1
Lijun Li, Congying Jia, Qianqian Ma, Tianzong Xu
{"title":"Accurate Analysis of Multi-Mode Interferometric Optical Fiber Sensor","authors":"Lijun Li, Congying Jia, Qianqian Ma, Tianzong Xu","doi":"10.1007/s13320-023-0701-1","DOIUrl":"https://doi.org/10.1007/s13320-023-0701-1","url":null,"abstract":"","PeriodicalId":20108,"journal":{"name":"Photonic Sensors","volume":" 2","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138610044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Quantum Dot Color Filter Micro-LED Display 量子点彩色滤光片微型 LED 显示器的研究
IF 4.4 2区 物理与天体物理 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-12-01 DOI: 10.1007/s13320-023-0698-5
Xuhui Peng, Yang Zeng, Sitao Huo, Zhenyuan Yang, Xiaoping Huang, Qing Zhao
{"title":"Investigation of Quantum Dot Color Filter Micro-LED Display","authors":"Xuhui Peng, Yang Zeng, Sitao Huo, Zhenyuan Yang, Xiaoping Huang, Qing Zhao","doi":"10.1007/s13320-023-0698-5","DOIUrl":"https://doi.org/10.1007/s13320-023-0698-5","url":null,"abstract":"","PeriodicalId":20108,"journal":{"name":"Photonic Sensors","volume":" 5","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138613347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vertical Displacement Measurement in a Slow-Moving Sinkhole Using BOTDA 利用 BOTDA 测量缓慢移动天坑中的垂直位移
IF 4.4 2区 物理与天体物理 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-12-01 DOI: 10.1007/s13320-023-0696-7
P. Sevillano, Javier Preciado-Garbayo, J. Sevil, Francisco Gutiérrez, Juan J. Martínez, S. Martín-López, M. González-Herráez
{"title":"Vertical Displacement Measurement in a Slow-Moving Sinkhole Using BOTDA","authors":"P. Sevillano, Javier Preciado-Garbayo, J. Sevil, Francisco Gutiérrez, Juan J. Martínez, S. Martín-López, M. González-Herráez","doi":"10.1007/s13320-023-0696-7","DOIUrl":"https://doi.org/10.1007/s13320-023-0696-7","url":null,"abstract":"","PeriodicalId":20108,"journal":{"name":"Photonic Sensors","volume":"80 2","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138622827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random Raman Fiber Laser as a Liquid Refractive Index Sensor 作为液体折射率传感器的随机拉曼光纤激光器
IF 4.4 2区 物理与天体物理 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-12-01 DOI: 10.1007/s13320-023-0697-6
Bing Han, Yuxi Ma, Han Wu, Yong Zhao
{"title":"Random Raman Fiber Laser as a Liquid Refractive Index Sensor","authors":"Bing Han, Yuxi Ma, Han Wu, Yong Zhao","doi":"10.1007/s13320-023-0697-6","DOIUrl":"https://doi.org/10.1007/s13320-023-0697-6","url":null,"abstract":"","PeriodicalId":20108,"journal":{"name":"Photonic Sensors","volume":" 16","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138620920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vacuum Packaging Sensor Based on Time-Resolved Phosphorescence Spectroscopy 基于时间分辨磷光光谱技术的真空包装传感器
IF 4.4 2区 物理与天体物理 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-11-30 DOI: 10.1007/s13320-023-0692-y
E. Heydari, Fatemeh Yari, Hossein Zare-Behtash
{"title":"Vacuum Packaging Sensor Based on Time-Resolved Phosphorescence Spectroscopy","authors":"E. Heydari, Fatemeh Yari, Hossein Zare-Behtash","doi":"10.1007/s13320-023-0692-y","DOIUrl":"https://doi.org/10.1007/s13320-023-0692-y","url":null,"abstract":"","PeriodicalId":20108,"journal":{"name":"Photonic Sensors","volume":" 29","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139207149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Displacement Calibration of Optical Tweezers With Gravitational Acceleration 重力加速度下光镊的位移标定
2区 物理与天体物理 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-10-14 DOI: 10.1007/s13320-023-0687-8
Jianyu Yang, Nan Li, Xunmin Zhu, Ming Chen, Mian Wu, Xingfan Chen, Cheng Liu, Jian Zhuang, Huizhu Hu
Abstract In recent years, levitated particles of optical traps in vacuum have shown the enormous potential for precision sensor development and new physics exploration. However, the accuracy of the sensor is still hampered by the uncertainty of the calibration factor relating the detected signal to the absolute displacement of the trapped particle. In this paper, we suggest and experimentally demonstrate a novel calibration method for optical tweezers based on free-falling particles in vacuum, where the gravitational acceleration is introduced as an absolute reference. Our work provides a calibration protocol with a great certainty and traceability, which is significant in improving the accuracy of precision sensing based on levitated optomechanical systems.
近年来,真空光学阱悬浮粒子在精密传感器开发和新物理探索方面显示出巨大的潜力。然而,传感器的精度仍然受到与被捕获粒子的绝对位移有关的校准因子的不确定性的影响。本文提出并实验证明了一种基于真空中自由落体粒子的光镊标定新方法,其中引入了重力加速度作为绝对参考。我们的工作提供了一种具有高度确定性和可追溯性的校准方案,这对提高基于悬浮光学机械系统的精密传感精度具有重要意义。
{"title":"Displacement Calibration of Optical Tweezers With Gravitational Acceleration","authors":"Jianyu Yang, Nan Li, Xunmin Zhu, Ming Chen, Mian Wu, Xingfan Chen, Cheng Liu, Jian Zhuang, Huizhu Hu","doi":"10.1007/s13320-023-0687-8","DOIUrl":"https://doi.org/10.1007/s13320-023-0687-8","url":null,"abstract":"Abstract In recent years, levitated particles of optical traps in vacuum have shown the enormous potential for precision sensor development and new physics exploration. However, the accuracy of the sensor is still hampered by the uncertainty of the calibration factor relating the detected signal to the absolute displacement of the trapped particle. In this paper, we suggest and experimentally demonstrate a novel calibration method for optical tweezers based on free-falling particles in vacuum, where the gravitational acceleration is introduced as an absolute reference. Our work provides a calibration protocol with a great certainty and traceability, which is significant in improving the accuracy of precision sensing based on levitated optomechanical systems.","PeriodicalId":20108,"journal":{"name":"Photonic Sensors","volume":"96 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135766087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MEMS and MOEMS Gyroscopes: A Review MEMS和MOEMS陀螺仪:综述
2区 物理与天体物理 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-10-09 DOI: 10.1007/s13320-023-0693-x
Wenyi Huang, Xing Yan, Sengyu Zhang, Zhe Li, Jamal N. A. Hassan, Dingwei Chen, Guangjun Wen, Kai Chen, Guangwei Deng, Yongjun Huang
Abstract Micro-gyroscopes using micro-electro-mechanical system (MEMS) and micro-opto-electro-mechanical system (MOEMS) are the new-generation and recently well-developed gyroscopes produced by the combinations of the traditional gyroscope technology and MEMS/MOEMS technologies. According to the working principle and used materials, the newly-reported micro-gyroscopes in recent years include the silicon-based micromechanical vibratory gyroscope, hemispherical resonant gyroscope, piezoelectric vibratory gyroscope, suspended rotor gyroscope, microfluidic gyroscope, optical gyroscope, and atomic gyroscope. According to different sensitive structures, the silicon-based micromechanical vibratory gyroscope can also be divided into double frame type, tuning fork type, vibrating ring type, and nested ring type. For those micro-gyroscopes, in recent years, many emerging techniques are proposed and developed to enhance different aspects of performances, such as the sensitivity, angle random walk (ARW), bias instability (BI), and bandwidth. Therefore, this paper will firstly review the main performances and applications of those newly-developed MEMS/MOEMS gyroscopes, then comprehensively summarize and analyze the latest research progress of the micro-gyroscopes mentioned above, and finally discuss the future development trends of MEMS/MOEMS gyroscopes.
采用微机电系统(MEMS)和微机电系统(MOEMS)的微陀螺仪是传统陀螺仪技术与MEMS/MOEMS技术相结合而发展起来的新一代陀螺仪。根据工作原理和使用材料的不同,近年来新报道的微陀螺仪有硅基微机械振动陀螺仪、半球形谐振陀螺仪、压电振动陀螺仪、悬浮转子陀螺仪、微流体陀螺仪、光学陀螺仪和原子陀螺仪等。硅基微机械振动陀螺仪根据敏感结构的不同,还可分为双框架型、音叉型、振动环型和嵌套环型。对于这些微陀螺仪,近年来提出并发展了许多新兴技术来提高其不同方面的性能,如灵敏度、角度随机游走(ARW)、偏置不稳定性(BI)和带宽。因此,本文将首先对最新开发的MEMS/MOEMS陀螺仪的主要性能和应用进行综述,然后对上述微陀螺仪的最新研究进展进行综合总结和分析,最后讨论MEMS/MOEMS陀螺仪的未来发展趋势。
{"title":"MEMS and MOEMS Gyroscopes: A Review","authors":"Wenyi Huang, Xing Yan, Sengyu Zhang, Zhe Li, Jamal N. A. Hassan, Dingwei Chen, Guangjun Wen, Kai Chen, Guangwei Deng, Yongjun Huang","doi":"10.1007/s13320-023-0693-x","DOIUrl":"https://doi.org/10.1007/s13320-023-0693-x","url":null,"abstract":"Abstract Micro-gyroscopes using micro-electro-mechanical system (MEMS) and micro-opto-electro-mechanical system (MOEMS) are the new-generation and recently well-developed gyroscopes produced by the combinations of the traditional gyroscope technology and MEMS/MOEMS technologies. According to the working principle and used materials, the newly-reported micro-gyroscopes in recent years include the silicon-based micromechanical vibratory gyroscope, hemispherical resonant gyroscope, piezoelectric vibratory gyroscope, suspended rotor gyroscope, microfluidic gyroscope, optical gyroscope, and atomic gyroscope. According to different sensitive structures, the silicon-based micromechanical vibratory gyroscope can also be divided into double frame type, tuning fork type, vibrating ring type, and nested ring type. For those micro-gyroscopes, in recent years, many emerging techniques are proposed and developed to enhance different aspects of performances, such as the sensitivity, angle random walk (ARW), bias instability (BI), and bandwidth. Therefore, this paper will firstly review the main performances and applications of those newly-developed MEMS/MOEMS gyroscopes, then comprehensively summarize and analyze the latest research progress of the micro-gyroscopes mentioned above, and finally discuss the future development trends of MEMS/MOEMS gyroscopes.","PeriodicalId":20108,"journal":{"name":"Photonic Sensors","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response of Photonic Hydrogels of Homogeneous Particles to Uranyl Ions in Aqueous Solutions 均匀粒子光子水凝胶对水溶液中铀酰离子的响应
2区 物理与天体物理 Q1 INSTRUMENTS & INSTRUMENTATION Pub Date : 2023-09-27 DOI: 10.1007/s13320-023-0695-8
R. G. Joshi, Deepak K. Gupta, P. Amesh, P. K. Parida, T. R. Ravindran
Abstract We study here the response of photonic hydrogels (PHs), made of photonic crystals of homogeneous silica particles in polyacrylamide hydrogels (SPHs), to the uranyl ions UO 2 2+ in aqueous solutions. It is found that the reflection spectra of the SPH show a peak due to the Bragg diffraction, which exhibits a blue shift in the presence of UO 2 2+ . Upon exposure to the SPH, UO 2 2+ gets adsorbed on the SPH and forms complex coordinate bonds with multiple ligands on the SPH, which causes shrinking of hydrogel and leads to the blue shift in the diffraction peak. The amount of the blue shift in the diffraction peak increases monotonically up to UO 2 2+ concentrations as high as 2300µM. The equilibration time for the shift in the Bragg peak upon exposure to UO 2 2+ is found to be ~30 min. These results are in contrast to the earlier reports on photonic hydrogels of inhomogeneous microgel particles hydrogel (MPH), which shows the threshold UO 2 2+ concentration of ~600 µM, below which the diffraction peak exhibits a blue shift and a change to a red shift above it. The equilibration time for MPH is ~300min. The observed monotonic blue shift and the faster time response of the SPH to UO 2 2+ as compared to the MPH are explained in terms of homogeneous nature of silica particles in the SPH, against the porous and polymeric nature of microgels in the MPH. We also study the extraction of UO 2 2+ from aqueous solutions using the SPH. The extraction capacity estimated by the arsenazo-III analysis is found to be 112 mM/kg.
摘要本文研究了聚丙烯酰胺水凝胶(SPHs)中均相二氧化硅粒子的光子晶体构成的光子水凝胶(PHs)对水溶液中铀酰离子UO 22 +的响应。发现SPH的反射光谱在uo22 +的存在下,由于Bragg衍射而出现了一个蓝移峰。暴露于SPH后,UO 22 +被吸附在SPH上,与SPH上的多个配体形成复杂的配位键,导致水凝胶收缩,导致衍射峰蓝移。当u22 +浓度高达2300µM时,衍射峰的蓝移量单调增加。暴露于UO 22 +后,Bragg峰位移的平衡时间为~30 min。这些结果与先前关于非均匀微凝胶粒子水凝胶(MPH)的光子水凝胶的报道相反,该结果显示UO 22 +浓度的阈值为~600µM,低于该阈值的衍射峰呈现蓝移,而高于该阈值的衍射峰则呈现红移。MPH的平衡时间为~300min。观察到的单调蓝移和SPH对UO 22 +比MPH更快的时间响应可以解释为SPH中二氧化硅颗粒的均匀性,而MPH中微凝胶的多孔性和聚合性。我们还研究了用SPH从水溶液中萃取u22 +。偶氮胂-ⅲ的萃取量为112 mM/kg。
{"title":"Response of Photonic Hydrogels of Homogeneous Particles to Uranyl Ions in Aqueous Solutions","authors":"R. G. Joshi, Deepak K. Gupta, P. Amesh, P. K. Parida, T. R. Ravindran","doi":"10.1007/s13320-023-0695-8","DOIUrl":"https://doi.org/10.1007/s13320-023-0695-8","url":null,"abstract":"Abstract We study here the response of photonic hydrogels (PHs), made of photonic crystals of homogeneous silica particles in polyacrylamide hydrogels (SPHs), to the uranyl ions UO 2 2+ in aqueous solutions. It is found that the reflection spectra of the SPH show a peak due to the Bragg diffraction, which exhibits a blue shift in the presence of UO 2 2+ . Upon exposure to the SPH, UO 2 2+ gets adsorbed on the SPH and forms complex coordinate bonds with multiple ligands on the SPH, which causes shrinking of hydrogel and leads to the blue shift in the diffraction peak. The amount of the blue shift in the diffraction peak increases monotonically up to UO 2 2+ concentrations as high as 2300µM. The equilibration time for the shift in the Bragg peak upon exposure to UO 2 2+ is found to be ~30 min. These results are in contrast to the earlier reports on photonic hydrogels of inhomogeneous microgel particles hydrogel (MPH), which shows the threshold UO 2 2+ concentration of ~600 µM, below which the diffraction peak exhibits a blue shift and a change to a red shift above it. The equilibration time for MPH is ~300min. The observed monotonic blue shift and the faster time response of the SPH to UO 2 2+ as compared to the MPH are explained in terms of homogeneous nature of silica particles in the SPH, against the porous and polymeric nature of microgels in the MPH. We also study the extraction of UO 2 2+ from aqueous solutions using the SPH. The extraction capacity estimated by the arsenazo-III analysis is found to be 112 mM/kg.","PeriodicalId":20108,"journal":{"name":"Photonic Sensors","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135477390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Photonic Sensors
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1