A review on nanomaterial-based additive manufacturing: dynamics in properties, prospects, and challenges

IF 4.4 Q2 ENGINEERING, MANUFACTURING Progress in Additive Manufacturing Pub Date : 2023-10-14 DOI:10.1007/s40964-023-00514-8
Mustafijur Rahman, Kazi Sirajul Islam, Tanvir Mahady Dip, Mohammed Farhad Mahmud Chowdhury, Smita Rani Debnath, Shah Md. Maruf Hasan, Md. Sadman Sakib, Tanushree Saha, Rajiv Padhye, Shadi Houshyar
{"title":"A review on nanomaterial-based additive manufacturing: dynamics in properties, prospects, and challenges","authors":"Mustafijur Rahman, Kazi Sirajul Islam, Tanvir Mahady Dip, Mohammed Farhad Mahmud Chowdhury, Smita Rani Debnath, Shah Md. Maruf Hasan, Md. Sadman Sakib, Tanushree Saha, Rajiv Padhye, Shadi Houshyar","doi":"10.1007/s40964-023-00514-8","DOIUrl":null,"url":null,"abstract":"Abstract The incorporation of nanomaterials has revolutionized the field of additive manufacturing. The combination of additive manufacturing technology with nanomaterials has significantly broadened the scope of materials available for modern and innovative applications in various fields, including healthcare, construction, food processing, and the textile industry. By integrating nanomaterials into additive manufacturing, the manufacturing process can be enhanced, and the properties of materials can be improved, enabling the fabrication of intricate structures and complex shapes. This review provides a comprehensive overview of the latest research on additive manufacturing techniques that utilize nanomaterials. It covers a wide range of nanomaterials employed in additive manufacturing and presents recent research findings on their incorporation into various categories of additive manufacturing, highlighting their impact on the properties of the final product. Moreover, the article discusses the potential of nanomaterial-based additive manufacturing technologies to revolutionize the manufacturing industry and explores the diverse applications of these techniques. The review concludes by outlining future research directions and focusing on addressing current challenges to enhance the overall efficiency and effectiveness of nanomaterial-based additive manufacturing. Graphical abstract","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"28 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40964-023-00514-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The incorporation of nanomaterials has revolutionized the field of additive manufacturing. The combination of additive manufacturing technology with nanomaterials has significantly broadened the scope of materials available for modern and innovative applications in various fields, including healthcare, construction, food processing, and the textile industry. By integrating nanomaterials into additive manufacturing, the manufacturing process can be enhanced, and the properties of materials can be improved, enabling the fabrication of intricate structures and complex shapes. This review provides a comprehensive overview of the latest research on additive manufacturing techniques that utilize nanomaterials. It covers a wide range of nanomaterials employed in additive manufacturing and presents recent research findings on their incorporation into various categories of additive manufacturing, highlighting their impact on the properties of the final product. Moreover, the article discusses the potential of nanomaterial-based additive manufacturing technologies to revolutionize the manufacturing industry and explores the diverse applications of these techniques. The review concludes by outlining future research directions and focusing on addressing current challenges to enhance the overall efficiency and effectiveness of nanomaterial-based additive manufacturing. Graphical abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于纳米材料的增材制造:动态特性、前景和挑战
纳米材料的引入已经彻底改变了增材制造领域。增材制造技术与纳米材料的结合极大地拓宽了材料在各个领域的现代和创新应用范围,包括医疗保健、建筑、食品加工和纺织工业。通过将纳米材料集成到增材制造中,可以提高制造工艺,改善材料的性能,从而可以制造复杂的结构和复杂的形状。本文综述了利用纳米材料的增材制造技术的最新研究进展。它涵盖了增材制造中广泛使用的纳米材料,并介绍了将其纳入各种增材制造类别的最新研究成果,强调了它们对最终产品性能的影响。此外,本文还讨论了基于纳米材料的增材制造技术革新制造业的潜力,并探讨了这些技术的各种应用。最后概述了未来的研究方向,并重点解决当前面临的挑战,以提高纳米材料增材制造的整体效率和有效性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Additive Manufacturing
Progress in Additive Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
7.20
自引率
0.00%
发文量
113
期刊介绍: Progress in Additive Manufacturing promotes highly scored scientific investigations from academia, government and industry R&D activities. The journal publishes the advances in the processing of different kinds of materials by well-established and new Additive Manufacturing (AM) technologies. Manuscripts showing the progress in the processing and development of multi-materials by hybrid additive manufacturing or by the combination of additive and subtractive manufacturing technologies are also welcome. Progress in Additive Manufacturing serves as a platform for scientists to contribute full papers as well as review articles and short communications analyzing aspects ranging from data processing (new design tools, data formats), simulation, materials (ceramic, metals, polymers, composites, biomaterials and multi-materials), microstructure development, new AM processes or combination of processes (e.g. additive and subtractive, hybrid, multi-steps), parameter and process optimization, new testing methods for AM parts and process monitoring. The journal welcomes manuscripts in several AM topics, including: • Design tools and data format • Material aspects and new developments • Multi-material and composites • Microstructure evolution of AM parts • Optimization of existing processes • Development of new techniques and processing strategies (combination subtractive and additive    methods, hybrid processes) • Integration with conventional manufacturing techniques • Innovative applications of AM parts (for tooling, high temperature or high performance    applications) • Process monitoring and non-destructive testing of AM parts • Speed-up strategies for AM processes • New test methods and special features of AM parts
期刊最新文献
A 4D printed self-assembling PEGDA microscaffold fabricated by digital light processing for arthroscopic articular cartilage tissue engineering. Impact of printing parameters on in-plane tensile and fracture toughness of fused filament fabricated PEEK A machine learning methodology for porosity classification and process map prediction in laser powder bed fusion Setting of L-PBF parameters for obtaining high density and mechanical performance of AISI 316L and 16MnCr5 alloys with fine laser spot size 4D printing of shape memory polymer with continuous carbon fiber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1