Yunjie Hao, Chuanyung Wu, Yuchuan Su, Jude Curran, James R Henstock, Fangang Tseng
{"title":"A 4D printed self-assembling PEGDA microscaffold fabricated by digital light processing for arthroscopic articular cartilage tissue engineering.","authors":"Yunjie Hao, Chuanyung Wu, Yuchuan Su, Jude Curran, James R Henstock, Fangang Tseng","doi":"10.1007/s40964-022-00360-0","DOIUrl":null,"url":null,"abstract":"<p><p>Articular cartilage in synovial joints such as the knee has limited capability to regenerate independently, and most clinical options for focal cartilage repair merely delay total joint replacement. Tissue engineering presents a repair strategy in which an injectable cell-laden scaffold material is used to reconstruct the joint in situ through mechanical stabilisation and cell-mediated regeneration. In this study, we designed and 3D-printed millimetre-scale micro-patterned PEGDA biomaterial microscaffolds which self-assemble through tessellation at a scale relevant for applications in osteochondral cartilage reconstruction. Using simulated chondral lesions in an in vitro model, a series of scaffold designs and viscous delivery solutions were assessed. Hexagonal microscaffolds (750 μm x 300 μm) demonstrated the best coverage of a model cartilage lesion (at 73.3%) when injected with a 1% methyl cellulose solution. When chondrocytes were introduced to the biomaterial via a collagen hydrogel, they successfully engrafted with the printed microscaffolds and survived for at least 14 days in vitro, showing the feasibility of reconstructing stratified cartilaginous tissue using this strategy. Our study demonstrates a promising application of this 4D-printed injectable technique for future clinical applications in osteochondral tissue engineering.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40964-022-00360-0.</p>","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851926/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40964-022-00360-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Articular cartilage in synovial joints such as the knee has limited capability to regenerate independently, and most clinical options for focal cartilage repair merely delay total joint replacement. Tissue engineering presents a repair strategy in which an injectable cell-laden scaffold material is used to reconstruct the joint in situ through mechanical stabilisation and cell-mediated regeneration. In this study, we designed and 3D-printed millimetre-scale micro-patterned PEGDA biomaterial microscaffolds which self-assemble through tessellation at a scale relevant for applications in osteochondral cartilage reconstruction. Using simulated chondral lesions in an in vitro model, a series of scaffold designs and viscous delivery solutions were assessed. Hexagonal microscaffolds (750 μm x 300 μm) demonstrated the best coverage of a model cartilage lesion (at 73.3%) when injected with a 1% methyl cellulose solution. When chondrocytes were introduced to the biomaterial via a collagen hydrogel, they successfully engrafted with the printed microscaffolds and survived for at least 14 days in vitro, showing the feasibility of reconstructing stratified cartilaginous tissue using this strategy. Our study demonstrates a promising application of this 4D-printed injectable technique for future clinical applications in osteochondral tissue engineering.
Supplementary information: The online version contains supplementary material available at 10.1007/s40964-022-00360-0.
期刊介绍:
Progress in Additive Manufacturing promotes highly scored scientific investigations from academia, government and industry R&D activities. The journal publishes the advances in the processing of different kinds of materials by well-established and new Additive Manufacturing (AM) technologies. Manuscripts showing the progress in the processing and development of multi-materials by hybrid additive manufacturing or by the combination of additive and subtractive manufacturing technologies are also welcome. Progress in Additive Manufacturing serves as a platform for scientists to contribute full papers as well as review articles and short communications analyzing aspects ranging from data processing (new design tools, data formats), simulation, materials (ceramic, metals, polymers, composites, biomaterials and multi-materials), microstructure development, new AM processes or combination of processes (e.g. additive and subtractive, hybrid, multi-steps), parameter and process optimization, new testing methods for AM parts and process monitoring. The journal welcomes manuscripts in several AM topics, including: • Design tools and data format • Material aspects and new developments • Multi-material and composites • Microstructure evolution of AM parts • Optimization of existing processes • Development of new techniques and processing strategies (combination subtractive and additive methods, hybrid processes) • Integration with conventional manufacturing techniques • Innovative applications of AM parts (for tooling, high temperature or high performance applications) • Process monitoring and non-destructive testing of AM parts • Speed-up strategies for AM processes • New test methods and special features of AM parts