Broadband Polarization-Decoupled Metasurface for Generating Tailored Dual-Polarization Conical Beams

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of RF and Microwave Computer-Aided Engineering Pub Date : 2023-10-14 DOI:10.1155/2023/3599970
Lingjun Yang, Beier Ying, Sheng Sun
{"title":"Broadband Polarization-Decoupled Metasurface for Generating Tailored Dual-Polarization Conical Beams","authors":"Lingjun Yang, Beier Ying, Sheng Sun","doi":"10.1155/2023/3599970","DOIUrl":null,"url":null,"abstract":"Conical beam antenna plays a significant role in providing stable access to satellite signals for moving communication terminals. Although metasurfaces have been used to generate conical beams, most of them can only reflect conical beams with identically distributed and mirror-symmetric phase responses for left-hand circular polarization and right-hand circular polarization, which can hinder the dual-polarization applications of metasurfaces. In this study, a metasurface is designed to independently manipulate dual-polarized excitations in broadband. To achieve the broadband control of conical beams, broadband conditions for both geometric and propagation phases are developed. Differently, metasurface designed in this study consists of three types of distinguishingly shaped elements, which can provide more degree of freedom in dual-polarization broadband design. In addition, a design method is developed for metasurface to generate the cone angle tailorable conical beams. Via fabricating a metasurface following the proposed method, the designed metasurface is verified in theorem, simulation, and experiment that it can generate desired conical beams with tailored divergent angles and phase responses covering a bandwidth from 12.5 GHz to 17 GHz.","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3599970","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Conical beam antenna plays a significant role in providing stable access to satellite signals for moving communication terminals. Although metasurfaces have been used to generate conical beams, most of them can only reflect conical beams with identically distributed and mirror-symmetric phase responses for left-hand circular polarization and right-hand circular polarization, which can hinder the dual-polarization applications of metasurfaces. In this study, a metasurface is designed to independently manipulate dual-polarized excitations in broadband. To achieve the broadband control of conical beams, broadband conditions for both geometric and propagation phases are developed. Differently, metasurface designed in this study consists of three types of distinguishingly shaped elements, which can provide more degree of freedom in dual-polarization broadband design. In addition, a design method is developed for metasurface to generate the cone angle tailorable conical beams. Via fabricating a metasurface following the proposed method, the designed metasurface is verified in theorem, simulation, and experiment that it can generate desired conical beams with tailored divergent angles and phase responses covering a bandwidth from 12.5 GHz to 17 GHz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于产生定制双偏振锥形光束的宽带偏振去耦超表面
圆锥波束天线在为移动通信终端提供稳定的卫星信号接入方面发挥着重要作用。虽然超表面已经被用于产生锥形光束,但大多数超表面只能在左圆偏振和右圆偏振下反射具有同分布和镜像对称相位响应的锥形光束,这阻碍了超表面的双偏振应用。在这项研究中,设计了一个超表面来独立地操纵宽带中的双极化激发。为了实现锥形波束的宽带控制,提出了几何相位和传播相位的宽带条件。不同的是,本研究设计的超表面由三种不同形状的单元组成,可以为双极化宽带设计提供更大的自由度。此外,还提出了一种生成锥角可调圆锥梁的超曲面设计方法。根据所提出的方法制作了一个超表面,并通过理论、仿真和实验验证了所设计的超表面可以产生具有定制发散角和相位响应的锥形波束,覆盖12.5 GHz至17 GHz的带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
23.50%
发文量
489
审稿时长
3 months
期刊介绍: International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology. Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . . -Computer-Aided Modeling -Computer-Aided Analysis -Computer-Aided Optimization -Software and Manufacturing Techniques -Computer-Aided Measurements -Measurements Interfaced with CAD Systems In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.
期刊最新文献
Numerical Analysis of Therapeutic Effects by Varying Slot Numbers and Slot-to-Slot Distance in Microwave Ablation Using Multislot Coaxial Antenna Study of Electromagnetic Radiation From High-Speed Train Voice and Data Antennae on the Health of Pacemaker Wearers Miniaturize Dual-Band Open-Loop Resonator-Based MIMO Antenna With Wide Bandwidth and High Gain Multifunctional Frequency-Selective Rasorber With Passband Stealth Performance A 10 × 10 MIMO Multiband Broadband Planar Antenna for Multiband Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1