{"title":"Real Time Asthma Disease Detection and Identification Technique from Speech Signals Using Hybrid Dense Convolutional Neural Network","authors":"Md. Asim Iqbal, K. Devarajan, Syed Musthak Ahmed","doi":"10.13052/jmm1550-4646.1967","DOIUrl":null,"url":null,"abstract":"Recently, asthma patients are severely suffering COVID-19 disease, thus the asthma has become one of the dangerous diseases in the world. Further, asthma is occurring in all age groups, which causing huge loss to patient’s health. The primary way to detect the asthma in humans is done by their speech signals, as the asthma severity is increases, which manipulates the properties of speech signal. The conventional methods are failed to extract the maximum features from the speech signals, which resulted in low classification performance. Thus, this article is focused on implementation of real time asthma disease detection and identification technique from speech signals using Multi-Feature Extraction, Selection with Hybrid Classifiers (MFESHC). Initially, speech signals are preprocessed by using Maximum likelihood estimation based spread spectrum analysis (MLE-SSA) method. Then, Improved prefix Beam Search (IPBS) based natural language processing (NLP) method is used to extract and select the best features from the preprocessed speech signals. Then, hybrid dense convolutional neural networks (HDCNN) are used to classify the type of asthma such as normal, stridor, wheezes and rattle classes. Further, Modified Crow Search (MCS) is used to optimize the losses generated in the HDCNN model. The simulation results shows that the proposed MFESHC method resulted in superior performance as compared to state of art approaches because the MCS effectively reduced the losses in the model.","PeriodicalId":38898,"journal":{"name":"Journal of Mobile Multimedia","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mobile Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jmm1550-4646.1967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, asthma patients are severely suffering COVID-19 disease, thus the asthma has become one of the dangerous diseases in the world. Further, asthma is occurring in all age groups, which causing huge loss to patient’s health. The primary way to detect the asthma in humans is done by their speech signals, as the asthma severity is increases, which manipulates the properties of speech signal. The conventional methods are failed to extract the maximum features from the speech signals, which resulted in low classification performance. Thus, this article is focused on implementation of real time asthma disease detection and identification technique from speech signals using Multi-Feature Extraction, Selection with Hybrid Classifiers (MFESHC). Initially, speech signals are preprocessed by using Maximum likelihood estimation based spread spectrum analysis (MLE-SSA) method. Then, Improved prefix Beam Search (IPBS) based natural language processing (NLP) method is used to extract and select the best features from the preprocessed speech signals. Then, hybrid dense convolutional neural networks (HDCNN) are used to classify the type of asthma such as normal, stridor, wheezes and rattle classes. Further, Modified Crow Search (MCS) is used to optimize the losses generated in the HDCNN model. The simulation results shows that the proposed MFESHC method resulted in superior performance as compared to state of art approaches because the MCS effectively reduced the losses in the model.
期刊介绍:
The scope of the journal will be to address innovation and entrepreneurship aspects in the ICT sector. Edge technologies and advances in ICT that can result in disruptive concepts of major impact will be the major focus of the journal issues. Furthermore, novel processes for continuous innovation that can maintain a disruptive concept at the top level in the highly competitive ICT environment will be published. New practices for lean startup innovation, pivoting methods, evaluation and assessment of concepts will be published. The aim of the journal is to focus on the scientific part of the ICT innovation and highlight the research excellence that can differentiate a startup initiative from the competition.