Kang Yan, Weidong Jin, Yingkun Huang, Pucha Song, Zhenhua Li
{"title":"Deep adaptive temporal network (DAT-Net): an effective deep learning model for parameter estimation of radar multipath interference signals","authors":"Kang Yan, Weidong Jin, Yingkun Huang, Pucha Song, Zhenhua Li","doi":"10.1186/s13634-023-01053-8","DOIUrl":null,"url":null,"abstract":"Abstract Accurate parameter estimation in radar systems is critically hindered by multipath interference, a challenge that is amplified in complex and dynamic environments. Traditional methods for parameter estimation, which concentrate on single parameters and rely on statistical assumptions, often struggle in such scenarios. To address this, the deep adaptive temporal network (DAT-Net), an innovative deep learning model designed to handle the inherent complexities and non-stationarity of time series data, is proposed. In more detail, DAT-Net integrates both the pruned exact linear time method for effective time series segmentation and the exponential scaling-based importance evaluation algorithm for dynamic learning of importance weights. These methods enable the model to adapt to shifts in data distribution and provide a robust solution for parameter estimation. In addition, DAT-Net demonstrates the capability to comprehend inherent nonlinearities in radar multipath interference signals, thereby facilitating the modeling of intricate patterns within the data. Extensive validation experiments conducted across parameter estimation tasks and demonstrates the robust applicability and efficiency of the proposed DAT-Net model. The architecture yield root mean squared error scores as low as 0.0051 for single-parameter estimation and 0.0152 for multiple-parameter estimation.","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13634-023-01053-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Accurate parameter estimation in radar systems is critically hindered by multipath interference, a challenge that is amplified in complex and dynamic environments. Traditional methods for parameter estimation, which concentrate on single parameters and rely on statistical assumptions, often struggle in such scenarios. To address this, the deep adaptive temporal network (DAT-Net), an innovative deep learning model designed to handle the inherent complexities and non-stationarity of time series data, is proposed. In more detail, DAT-Net integrates both the pruned exact linear time method for effective time series segmentation and the exponential scaling-based importance evaluation algorithm for dynamic learning of importance weights. These methods enable the model to adapt to shifts in data distribution and provide a robust solution for parameter estimation. In addition, DAT-Net demonstrates the capability to comprehend inherent nonlinearities in radar multipath interference signals, thereby facilitating the modeling of intricate patterns within the data. Extensive validation experiments conducted across parameter estimation tasks and demonstrates the robust applicability and efficiency of the proposed DAT-Net model. The architecture yield root mean squared error scores as low as 0.0051 for single-parameter estimation and 0.0152 for multiple-parameter estimation.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.