{"title":"Keypoint-based registration of TLS point clouds using a statistical matching approach","authors":"Jannik Janßen, Heiner Kuhlmann, Christoph Holst","doi":"10.1515/jag-2022-0058","DOIUrl":null,"url":null,"abstract":"Abstract Laser scanning is a wide-spread practice to capture the environment. Besides the fields of robotics and self-driving cars, it has been applied in the field of engineering geodesy for documentation and monitoring purposes for many years. The registration of scans is still one of the main sources of uncertainty in the final point cloud. This paper presents a new keypoint-based method for terrestrial laser scan (TLS) registration for high-accuracy applications. Based on detected 2D-keypoints, we introduce a new statistical matching approach that tests wheter keypoints, scanned from two scan stations, can be assumed to be identical. This approach avoids the use of keypoint descriptors for matching and also handles wide distances between different scanner stations. The presented approach requires a good coarse registration as initial input, which can be achieved for example by artificial laser scanning targets. By means of two evaluation data sets, we show that our keypoint-based registration leads to the smallest loop closure error when traversing several stations compared to target-based and ICP registrations. Due to the high number of observations compared to the target-based registration, the reliability of the our keypoint-based registration can be increased significantly and the precision of the registration can be increased by about 25 % on average.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2022-0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Laser scanning is a wide-spread practice to capture the environment. Besides the fields of robotics and self-driving cars, it has been applied in the field of engineering geodesy for documentation and monitoring purposes for many years. The registration of scans is still one of the main sources of uncertainty in the final point cloud. This paper presents a new keypoint-based method for terrestrial laser scan (TLS) registration for high-accuracy applications. Based on detected 2D-keypoints, we introduce a new statistical matching approach that tests wheter keypoints, scanned from two scan stations, can be assumed to be identical. This approach avoids the use of keypoint descriptors for matching and also handles wide distances between different scanner stations. The presented approach requires a good coarse registration as initial input, which can be achieved for example by artificial laser scanning targets. By means of two evaluation data sets, we show that our keypoint-based registration leads to the smallest loop closure error when traversing several stations compared to target-based and ICP registrations. Due to the high number of observations compared to the target-based registration, the reliability of the our keypoint-based registration can be increased significantly and the precision of the registration can be increased by about 25 % on average.