Integrated gene-free potato genome editing using transient transcription activator-like effector nucleases and regeneration-promoting gene expression by <i>Agrobacterium</i> infection

IF 1.4 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Pub Date : 2023-09-25 DOI:10.5511/plantbiotechnology.23.0530a
Naoyuki Umemoto, Shuhei Yasumoto, Muneo Yamazaki, Kenji Asano, Kotaro Akai, Hyoung Jae Lee, Ryota Akiyama, Masaharu Mizutani, Yozo Nagira, Kazuki Saito, Toshiya Muranaka
{"title":"Integrated gene-free potato genome editing using transient transcription activator-like effector nucleases and regeneration-promoting gene expression by &lt;i&gt;Agrobacterium&lt;/i&gt; infection","authors":"Naoyuki Umemoto, Shuhei Yasumoto, Muneo Yamazaki, Kenji Asano, Kotaro Akai, Hyoung Jae Lee, Ryota Akiyama, Masaharu Mizutani, Yozo Nagira, Kazuki Saito, Toshiya Muranaka","doi":"10.5511/plantbiotechnology.23.0530a","DOIUrl":null,"url":null,"abstract":"Genome editing is highly useful for crop improvement. The method of expressing genome-editing enzymes using a transient expression system in Agrobacterium, called agrobacterial mutagenesis, is a shortcut used in genome-editing technology to improve elite varieties of vegetatively propagated crops, including potato. However, with this method, edited individuals cannot be selected. The transient expression of regeneration-promoting genes can result in shoot regeneration from plantlets, while the constitutive expression of most regeneration-promoting genes does not result in normally regenerated shoots. Here, we report that we could obtain genome-edited potatoes by positive selection. These regenerated shoots were obtained via a method that combined a regeneration-promoting gene with the transient expression of a genome-editing enzyme gene. Moreover, we confirmed that the genome-edited potatoes obtained using this method did not contain the sequence of the binary vector used in Agrobacterium. Our data have been submitted to the Japanese regulatory authority, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and we are in the process of conducting field tests for further research on these potatoes. Our work presents a powerful method for regarding regeneration and acquisition of genome-edited crops through transient expression of regeneration-promoting gene.","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"66 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.23.0530a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Genome editing is highly useful for crop improvement. The method of expressing genome-editing enzymes using a transient expression system in Agrobacterium, called agrobacterial mutagenesis, is a shortcut used in genome-editing technology to improve elite varieties of vegetatively propagated crops, including potato. However, with this method, edited individuals cannot be selected. The transient expression of regeneration-promoting genes can result in shoot regeneration from plantlets, while the constitutive expression of most regeneration-promoting genes does not result in normally regenerated shoots. Here, we report that we could obtain genome-edited potatoes by positive selection. These regenerated shoots were obtained via a method that combined a regeneration-promoting gene with the transient expression of a genome-editing enzyme gene. Moreover, we confirmed that the genome-edited potatoes obtained using this method did not contain the sequence of the binary vector used in Agrobacterium. Our data have been submitted to the Japanese regulatory authority, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and we are in the process of conducting field tests for further research on these potatoes. Our work presents a powerful method for regarding regeneration and acquisition of genome-edited crops through transient expression of regeneration-promoting gene.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用瞬时转录激活子样效应核酸酶和农杆菌表达再生促进基因的整合马铃薯无基因基因组编辑感染
基因组编辑对作物改良非常有用。在农杆菌中利用瞬时表达系统表达基因组编辑酶的方法,称为农杆菌诱变,是基因组编辑技术用于改良包括马铃薯在内的无性繁殖作物的优良品种的捷径。但是,使用此方法,无法选择已编辑的个体。再生促进基因的瞬时表达可使植株再生,而大多数再生促进基因的组成性表达不能使植株正常再生。在这里,我们报道我们可以通过正选择获得基因组编辑马铃薯。这些再生芽是通过将促进再生基因与基因组编辑酶基因的瞬时表达相结合的方法获得的。此外,我们证实使用这种方法获得的基因组编辑马铃薯不包含农杆菌中使用的二元载体的序列。我们的数据已经提交给了日本监管机构,教育、文化、体育、科学和技术省(MEXT),我们正在为这些土豆的进一步研究进行现场测试。我们的工作为通过瞬时表达促进再生基因来实现基因组编辑作物的再生和获取提供了一种强有力的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology
Plant Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-PLANT SCIENCES
CiteScore
2.90
自引率
18.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.
期刊最新文献
Comparison of functional properties of unripe papaya fruits of different sexes. Downregulation of a Phi class glutathione S-transferase gene in transgenic torenia yielded pale flower color. Eugenol transport and biosynthesis through grafting in aromatic plants of the Ocimum genus. Evaluation of host status of garlic varieties for a plant-parasitic nematode, Ditylenchus destructor, by using in vitro inoculation. Improved biolistic transformation and genome editing in wheat by using trehalose for high osmotic treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1