Dielectric breakdown and sub-wavelength patterning of monolayer hexagonal boron nitride using femtosecond pulses.

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY 2D Materials Pub Date : 2023-09-25 DOI:10.1088/2053-1583/acfa0f
Sabeeh Irfan Ahmad, Arpit Dave, Emmanuel Sarpong, Hsin-Yu Yao, Joel M. Solomon, Jing-Kai Jiang, Chih-Wei Luo, Wen-Hao Chang, Tsing-hua Her
{"title":"Dielectric breakdown and sub-wavelength patterning of monolayer hexagonal boron nitride using femtosecond pulses.","authors":"Sabeeh Irfan Ahmad, Arpit Dave, Emmanuel Sarpong, Hsin-Yu Yao, Joel M. Solomon, Jing-Kai Jiang, Chih-Wei Luo, Wen-Hao Chang, Tsing-hua Her","doi":"10.1088/2053-1583/acfa0f","DOIUrl":null,"url":null,"abstract":"Abstract Hexagonal boron nitride (hBN) has emerged as a promising two-dimensional (2D) material for many applications in electronics and photonics. Although its linear and nonlinear optical properties have been extensively studied, the interaction of hBN with high-intensity laser pulses, which is important for realizing high-harmonic generation, creating deterministic defects as quantum emitters, and resist-free patterning in this material, has not been investigated. Here we report the first systematic study of dielectric breakdown in chemical vapor deposition (CVD)-grown hBN monolayers induced by single femtosecond laser pulses. We report a breakdown fluence of 0.7 J cm −2 , which is at least 7× higher than that of other monolayer 2D materials. A clean removal of hBN without leaving traces behind or causing lateral damage is demonstrated. The ablation features exhibit excellent fidelity with very small edge roughness, which we attribute to its ultrahigh fracture toughness due to its heterogeneous nature with three-fold symmetry. Moreover, even though defects are known to be abundant in CVD-grown hBN, we show experimentally and theoretically that its nonlinear optical breakdown is nearly intrinsic as defects only marginally lower the breakdown threshold. On top of this, we observe that hBN monolayers have a 4–5× lower breakdown threshold than their bulk equivalent. The last two observations can be understood if the carrier generation in monolayers is intrinsically enhanced due to its 2D nature. Finally, we demonstrate laser patterning of array of holes and lines in hBN with sub-wavelength feature sizes. Our work advances the fundamental knowledge of light-hBN interaction in the strong field regime and firmly establishes femtosecond lasers as novel and promising tools for resist-free patterning of hBN monolayers with high fidelity.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"2013 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2053-1583/acfa0f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Hexagonal boron nitride (hBN) has emerged as a promising two-dimensional (2D) material for many applications in electronics and photonics. Although its linear and nonlinear optical properties have been extensively studied, the interaction of hBN with high-intensity laser pulses, which is important for realizing high-harmonic generation, creating deterministic defects as quantum emitters, and resist-free patterning in this material, has not been investigated. Here we report the first systematic study of dielectric breakdown in chemical vapor deposition (CVD)-grown hBN monolayers induced by single femtosecond laser pulses. We report a breakdown fluence of 0.7 J cm −2 , which is at least 7× higher than that of other monolayer 2D materials. A clean removal of hBN without leaving traces behind or causing lateral damage is demonstrated. The ablation features exhibit excellent fidelity with very small edge roughness, which we attribute to its ultrahigh fracture toughness due to its heterogeneous nature with three-fold symmetry. Moreover, even though defects are known to be abundant in CVD-grown hBN, we show experimentally and theoretically that its nonlinear optical breakdown is nearly intrinsic as defects only marginally lower the breakdown threshold. On top of this, we observe that hBN monolayers have a 4–5× lower breakdown threshold than their bulk equivalent. The last two observations can be understood if the carrier generation in monolayers is intrinsically enhanced due to its 2D nature. Finally, we demonstrate laser patterning of array of holes and lines in hBN with sub-wavelength feature sizes. Our work advances the fundamental knowledge of light-hBN interaction in the strong field regime and firmly establishes femtosecond lasers as novel and promising tools for resist-free patterning of hBN monolayers with high fidelity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用飞秒脉冲的单层六方氮化硼的介电击穿和亚波长图形。
六方氮化硼(hBN)已成为一种有前途的二维(2D)材料,在电子和光子学领域有许多应用。虽然hBN的线性和非线性光学特性已经被广泛研究,但hBN与高强度激光脉冲的相互作用对于实现高谐波产生、作为量子发射体产生确定性缺陷以及该材料的无电阻图形化很重要,但尚未被研究。本文首次系统地研究了单飞秒激光脉冲诱导化学气相沉积(CVD)生长的hBN单层的介电击穿。我们报告的击穿通量为0.7 jcm−2,比其他单层二维材料的击穿通量至少高7倍。演示了清洁去除hBN而不留下痕迹或造成侧向损伤。烧蚀特征具有优异的保真度和非常小的边缘粗糙度,我们将其归因于其具有三重对称的非均质特性所带来的超高断裂韧性。此外,尽管已知cvd生长的hBN中存在大量缺陷,但我们通过实验和理论证明,其非线性光学击穿几乎是固有的,因为缺陷仅略微降低击穿阈值。除此之外,我们观察到hBN单层的击穿阈值比它们的等效体低4 - 5倍。如果单层中的载流子产生由于其二维性质而本质上增强,则最后两个观察结果可以理解。最后,我们展示了具有亚波长特征尺寸的hBN中孔和线阵列的激光图像化。我们的工作推进了强场下光-hBN相互作用的基础知识,并牢固地建立了飞秒激光器作为高保真hBN单层无电阻图像化的新型和有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
期刊最新文献
Constructing three-dimensional GO/CNT@NMP aerogels towards primary lithium metal batteries Two-dimensional Janus MXTe (M = Hf, Zr; X = S, Se) piezoelectrocatalysts: a comprehensive investigation of its electronic, synthesis feasibility, electric polarization, and hydrogen evolution reaction activity The future of Xenes beyond graphene: challenges and perspective Soft-carbon-tuned hard carbon anode for ultrahigh-rate sodium storage Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1