Xuesong Yang, Yuao Wang, Zhuo Li, Zhuoying Cheng, Yinyi Gao, Kai Zhu and Dianxue Cao
{"title":"Constructing three-dimensional GO/CNT@NMP aerogels towards primary lithium metal batteries","authors":"Xuesong Yang, Yuao Wang, Zhuo Li, Zhuoying Cheng, Yinyi Gao, Kai Zhu and Dianxue Cao","doi":"10.1088/2053-1583/ad6884","DOIUrl":null,"url":null,"abstract":"Graphene oxide (GO) can serve as cathode material for a viable primary lithium metal battery due to its richness in oxygen-containing functional groups. However, its application is hindered by non-conductivity of GO. Herein, a proposed electrode structure design strategy is carried to regulate the electron and ion conductivity of the graphene oxide aerogel (GO/CNT@NMP) electrode while retaining the original energy density. GO/CNT@NMP exhibits a discharge specific capacity of 703 mAh g−1 and an ultra-high energy density of 1655.76 Wh kg−1 at a low rate of 0.02 A g−1. Additionally, it achieves a maximum discharge rate of 1.4 A g−1, five times higher than the initial maximum discharge rate of GO. Characterization and electrochemical tests reveal that the excellent performance of GO/CNT@NMP can be attributed to its porous structure, high electrical conductivity, and large layer spacing. This study presents a potent strategy for the advancement of ultra-fast primary batteries, aiming to integrate ultra-high energy density and high-rate discharge capabilities.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad6884","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene oxide (GO) can serve as cathode material for a viable primary lithium metal battery due to its richness in oxygen-containing functional groups. However, its application is hindered by non-conductivity of GO. Herein, a proposed electrode structure design strategy is carried to regulate the electron and ion conductivity of the graphene oxide aerogel (GO/CNT@NMP) electrode while retaining the original energy density. GO/CNT@NMP exhibits a discharge specific capacity of 703 mAh g−1 and an ultra-high energy density of 1655.76 Wh kg−1 at a low rate of 0.02 A g−1. Additionally, it achieves a maximum discharge rate of 1.4 A g−1, five times higher than the initial maximum discharge rate of GO. Characterization and electrochemical tests reveal that the excellent performance of GO/CNT@NMP can be attributed to its porous structure, high electrical conductivity, and large layer spacing. This study presents a potent strategy for the advancement of ultra-fast primary batteries, aiming to integrate ultra-high energy density and high-rate discharge capabilities.
期刊介绍:
2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.