{"title":"Massive MIMO-OFDM Transmission Without Cellular Networks Using Frequency - Selective Fading Channels","authors":"Dr. M. VijayaLakshmi, C. Anisha","doi":"10.22214/ijraset.2023.56225","DOIUrl":null,"url":null,"abstract":"Abstract: For cell-free massive multi-input multi-output (CF-m-MIMO) across frequency-selective fading channels, this system introduces and determines the effectiveness of the orthogonal frequency-division multiplexing (OFDM)-based multi-carrier transmission. The CF-m-MIMO-OFDM system can accommodate a substantial user base and is flexible enough to offer a range of data rates for usage in a variety of contexts. With its scalability and flexibility, the CF-m-MIMO-OFDM transmission network can serve a large number of users at variable data rates. It is proposed to beamform in the frequency-domain conjugate, to choose a pilot, and to allocate resources differently for each user. User-specific resource allocation, pilot selection, and frequency-domain conjugate beamforming are all suggested. The CF-m-MIMO-OFDM system can support a large number of users and can offer varying data rates to accommodate a wide range of applications.","PeriodicalId":14191,"journal":{"name":"International Journal of Oral Science","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Oral Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22214/ijraset.2023.56225","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: For cell-free massive multi-input multi-output (CF-m-MIMO) across frequency-selective fading channels, this system introduces and determines the effectiveness of the orthogonal frequency-division multiplexing (OFDM)-based multi-carrier transmission. The CF-m-MIMO-OFDM system can accommodate a substantial user base and is flexible enough to offer a range of data rates for usage in a variety of contexts. With its scalability and flexibility, the CF-m-MIMO-OFDM transmission network can serve a large number of users at variable data rates. It is proposed to beamform in the frequency-domain conjugate, to choose a pilot, and to allocate resources differently for each user. User-specific resource allocation, pilot selection, and frequency-domain conjugate beamforming are all suggested. The CF-m-MIMO-OFDM system can support a large number of users and can offer varying data rates to accommodate a wide range of applications.
期刊介绍:
The International Journal of Oral Science covers various aspects of oral science and interdisciplinary fields, encompassing basic, applied, and clinical research. Topics include, but are not limited to:
Oral microbiology
Oral and maxillofacial oncology
Cariology
Oral inflammation and infection
Dental stem cells and regenerative medicine
Craniofacial surgery
Dental material
Oral biomechanics
Oral, dental, and maxillofacial genetic and developmental diseases
Craniofacial bone research
Craniofacial-related biomaterials
Temporomandibular joint disorder and osteoarthritis
The journal publishes peer-reviewed Articles presenting new research results and Review Articles offering concise summaries of specific areas in oral science.