首页 > 最新文献

ACS Central Science最新文献

英文 中文
Measuring the Elusive Half-Life of Samarium-146.
IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-13 eCollection Date: 2025-01-22 DOI: 10.1021/acscentsci.4c02221
Mara Johnson-Groh
{"title":"Measuring the Elusive Half-Life of Samarium-146.","authors":"Mara Johnson-Groh","doi":"10.1021/acscentsci.4c02221","DOIUrl":"https://doi.org/10.1021/acscentsci.4c02221","url":null,"abstract":"","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"8-11"},"PeriodicalIF":12.7,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring the Elusive Half-Life of Samarium-146
IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-13 DOI: 10.1021/acscentsci.4c0222110.1021/acscentsci.4c02221
Mara Johnson-Groh, 

The isotope is critical for understanding Earth’s origins. Attempts at measuring its half-life have been plagued by errors, but a new approach offers hope.

{"title":"Measuring the Elusive Half-Life of Samarium-146","authors":"Mara Johnson-Groh,&nbsp;","doi":"10.1021/acscentsci.4c0222110.1021/acscentsci.4c02221","DOIUrl":"https://doi.org/10.1021/acscentsci.4c02221https://doi.org/10.1021/acscentsci.4c02221","url":null,"abstract":"<p >The isotope is critical for understanding Earth’s origins. Attempts at measuring its half-life have been plagued by errors, but a new approach offers hope.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"8–11 8–11"},"PeriodicalIF":12.7,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c02221","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143088061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity
IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-10 DOI: 10.1021/acscentsci.4c0134710.1021/acscentsci.4c01347
Florian R. Häge, Merlin Schwan, Marcos Rafael Conde González, Jonas Huber, Stefan Germer, Matilde Macrì, Jürgen Kopp, Irmgard Sinning* and Franziska Thomas*, 

The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu2+-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography. The miniprotein was found to be a strand-swapped dimer with an unusual coupled binuclear Type 2-like copper center in each protomer. SO1-Cu was found to be SOD-active with an activity only 1 order of magnitude lower than that of natural SOD enzymes and 1 to 2 orders of magnitude higher than that of other low-complexity SOD protein models of similar size. This serendipitous design provides us with a new structural template for future designs of binuclear metalloproteins with different metal ions and functions.

The catalytic copper site of human Cu,Zn Superoxide Dismutase 1 was grafted onto the c-Crk SH3 domain, resulting in a strand-swapped SH3 domain dimer with remarkable superoxide dismutase activity.

{"title":"Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity","authors":"Florian R. Häge,&nbsp;Merlin Schwan,&nbsp;Marcos Rafael Conde González,&nbsp;Jonas Huber,&nbsp;Stefan Germer,&nbsp;Matilde Macrì,&nbsp;Jürgen Kopp,&nbsp;Irmgard Sinning* and Franziska Thomas*,&nbsp;","doi":"10.1021/acscentsci.4c0134710.1021/acscentsci.4c01347","DOIUrl":"https://doi.org/10.1021/acscentsci.4c01347https://doi.org/10.1021/acscentsci.4c01347","url":null,"abstract":"<p >The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu<sup>2+</sup>-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography. The miniprotein was found to be a strand-swapped dimer with an unusual coupled binuclear Type 2-like copper center in each protomer. SO1-Cu was found to be SOD-active with an activity only 1 order of magnitude lower than that of natural SOD enzymes and 1 to 2 orders of magnitude higher than that of other low-complexity SOD protein models of similar size. This serendipitous design provides us with a new structural template for future designs of binuclear metalloproteins with different metal ions and functions.</p><p >The catalytic copper site of human Cu,Zn Superoxide Dismutase 1 was grafted onto the c-Crk SH3 domain, resulting in a strand-swapped SH3 domain dimer with remarkable superoxide dismutase activity.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"157–166 157–166"},"PeriodicalIF":12.7,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01347","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143087861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity.
IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-10 eCollection Date: 2025-01-22 DOI: 10.1021/acscentsci.4c01347
Florian R Häge, Merlin Schwan, Marcos Rafael Conde González, Jonas Huber, Stefan Germer, Matilde Macrì, Jürgen Kopp, Irmgard Sinning, Franziska Thomas

The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu2+-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography. The miniprotein was found to be a strand-swapped dimer with an unusual coupled binuclear Type 2-like copper center in each protomer. SO1-Cu was found to be SOD-active with an activity only 1 order of magnitude lower than that of natural SOD enzymes and 1 to 2 orders of magnitude higher than that of other low-complexity SOD protein models of similar size. This serendipitous design provides us with a new structural template for future designs of binuclear metalloproteins with different metal ions and functions.

{"title":"Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity.","authors":"Florian R Häge, Merlin Schwan, Marcos Rafael Conde González, Jonas Huber, Stefan Germer, Matilde Macrì, Jürgen Kopp, Irmgard Sinning, Franziska Thomas","doi":"10.1021/acscentsci.4c01347","DOIUrl":"10.1021/acscentsci.4c01347","url":null,"abstract":"<p><p>The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu<sup>2+</sup>-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography. The miniprotein was found to be a strand-swapped dimer with an unusual coupled binuclear Type 2-like copper center in each protomer. SO1-Cu was found to be SOD-active with an activity only 1 order of magnitude lower than that of natural SOD enzymes and 1 to 2 orders of magnitude higher than that of other low-complexity SOD protein models of similar size. This serendipitous design provides us with a new structural template for future designs of binuclear metalloproteins with different metal ions and functions.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"157-166"},"PeriodicalIF":12.7,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a Privileged Scaffold for Inhibition of Sterol Transport Proteins through the Synthesis and Ring Distortion of Diverse, Pseudo-Natural Products.
IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-09 eCollection Date: 2025-01-22 DOI: 10.1021/acscentsci.4c01657
Frederik Simonsen Bro, Laura Depta, Nienke J Dekker, Hogan P Bryce-Rogers, Maria Lillevang Madsen, Kaia Fiil Præstegaard, Tino Petersson, Thomas Whitmarsh-Everiss, Mariusz Kubus, Luca Laraia

Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins. The fusion of a primary sterol scaffold with a range of different fragments found in natural products followed by various ring distortions allowed the synthesis of diverse sterol-inspired compounds. This led to the identification of a complex and three-dimensional spirooxepinoindole as a privileged scaffold for sterol transport proteins. With careful optimization of the scaffold, the selectivity could be directed toward a single transporter, as showcased by the development of a potent and selective Aster-A inhibitor. We suggest that the combination of different design strategies is generally applicable for the identification of potent and selective bioactive compounds with drug-like properties.

{"title":"Identification of a Privileged Scaffold for Inhibition of Sterol Transport Proteins through the Synthesis and Ring Distortion of Diverse, Pseudo-Natural Products.","authors":"Frederik Simonsen Bro, Laura Depta, Nienke J Dekker, Hogan P Bryce-Rogers, Maria Lillevang Madsen, Kaia Fiil Præstegaard, Tino Petersson, Thomas Whitmarsh-Everiss, Mariusz Kubus, Luca Laraia","doi":"10.1021/acscentsci.4c01657","DOIUrl":"10.1021/acscentsci.4c01657","url":null,"abstract":"<p><p>Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins. The fusion of a primary sterol scaffold with a range of different fragments found in natural products followed by various ring distortions allowed the synthesis of diverse sterol-inspired compounds. This led to the identification of a complex and three-dimensional spirooxepinoindole as a privileged scaffold for sterol transport proteins. With careful optimization of the scaffold, the selectivity could be directed toward a single transporter, as showcased by the development of a potent and selective Aster-A inhibitor. We suggest that the combination of different design strategies is generally applicable for the identification of potent and selective bioactive compounds with drug-like properties.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"136-146"},"PeriodicalIF":12.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection of Early Life Codons by Ultraviolet Light.
IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-08 eCollection Date: 2025-01-22 DOI: 10.1021/acscentsci.4c01623
Corinna L Kufner, Stefan Krebs, Marlis Fischaleck, Julia Philippou-Massier, Helmut Blum, Dominik B Bucher, Dieter Braun, Wolfgang Zinth, Christof B Mast

How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences. In this proof-of-principle study, we quantified the UV susceptibility of large pools of DNA protogenomes and tested the timing of evolutionary incorporation of codon sequences using a Monte Carlo method utilizing sequence-context-dependent damage rates previously determined by high throughput sequencing experiments. We traced the UV-radiation selection pressure on early protogenomes comprising a limited number of codon sequences to late protogenomes with access to all codons. The modeling showed that in just minutes under early sunlight, the choice of the first codons determined whether most of the protogenomes remained intact or became damaged entirely. The results correlated with earlier chemical models of the evolution of the genetic code. Our results show how UV could have played a crucial role in the evolution of the early genetic code for a DNA-based genome and provide the concept for future RNA-based studies.

{"title":"Selection of Early Life Codons by Ultraviolet Light.","authors":"Corinna L Kufner, Stefan Krebs, Marlis Fischaleck, Julia Philippou-Massier, Helmut Blum, Dominik B Bucher, Dieter Braun, Wolfgang Zinth, Christof B Mast","doi":"10.1021/acscentsci.4c01623","DOIUrl":"10.1021/acscentsci.4c01623","url":null,"abstract":"<p><p>How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences. In this proof-of-principle study, we quantified the UV susceptibility of large pools of DNA protogenomes and tested the timing of evolutionary incorporation of codon sequences using a Monte Carlo method utilizing sequence-context-dependent damage rates previously determined by high throughput sequencing experiments. We traced the UV-radiation selection pressure on early protogenomes comprising a limited number of codon sequences to late protogenomes with access to all codons. The modeling showed that in just minutes under early sunlight, the choice of the first codons determined whether most of the protogenomes remained intact or became damaged entirely. The results correlated with earlier chemical models of the evolution of the genetic code. Our results show how UV could have played a crucial role in the evolution of the early genetic code for a DNA-based genome and provide the concept for future RNA-based studies.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"147-156"},"PeriodicalIF":12.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection of Early Life Codons by Ultraviolet Light
IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-08 DOI: 10.1021/acscentsci.4c0162310.1021/acscentsci.4c01623
Corinna L. Kufner, Stefan Krebs, Marlis Fischaleck, Julia Philippou-Massier, Helmut Blum, Dominik B. Bucher, Dieter Braun, Wolfgang Zinth and Christof B. Mast*, 

How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences. In this proof-of-principle study, we quantified the UV susceptibility of large pools of DNA protogenomes and tested the timing of evolutionary incorporation of codon sequences using a Monte Carlo method utilizing sequence-context-dependent damage rates previously determined by high throughput sequencing experiments. We traced the UV-radiation selection pressure on early protogenomes comprising a limited number of codon sequences to late protogenomes with access to all codons. The modeling showed that in just minutes under early sunlight, the choice of the first codons determined whether most of the protogenomes remained intact or became damaged entirely. The results correlated with earlier chemical models of the evolution of the genetic code. Our results show how UV could have played a crucial role in the evolution of the early genetic code for a DNA-based genome and provide the concept for future RNA-based studies.

Assessing the UV susceptibility of early DNA protogenomes by their use of codon sequences correlates with established amino acid chronologies, supporting the UV compatibility of early life.

{"title":"Selection of Early Life Codons by Ultraviolet Light","authors":"Corinna L. Kufner,&nbsp;Stefan Krebs,&nbsp;Marlis Fischaleck,&nbsp;Julia Philippou-Massier,&nbsp;Helmut Blum,&nbsp;Dominik B. Bucher,&nbsp;Dieter Braun,&nbsp;Wolfgang Zinth and Christof B. Mast*,&nbsp;","doi":"10.1021/acscentsci.4c0162310.1021/acscentsci.4c01623","DOIUrl":"https://doi.org/10.1021/acscentsci.4c01623https://doi.org/10.1021/acscentsci.4c01623","url":null,"abstract":"<p >How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences. In this proof-of-principle study, we quantified the UV susceptibility of large pools of DNA protogenomes and tested the timing of evolutionary incorporation of codon sequences using a Monte Carlo method utilizing sequence-context-dependent damage rates previously determined by high throughput sequencing experiments. We traced the UV-radiation selection pressure on early protogenomes comprising a limited number of codon sequences to late protogenomes with access to all codons. The modeling showed that in just minutes under early sunlight, the choice of the first codons determined whether most of the protogenomes remained intact or became damaged entirely. The results correlated with earlier chemical models of the evolution of the genetic code. Our results show how UV could have played a crucial role in the evolution of the early genetic code for a DNA-based genome and provide the concept for future RNA-based studies.</p><p >Assessing the UV susceptibility of early DNA protogenomes by their use of codon sequences correlates with established amino acid chronologies, supporting the UV compatibility of early life.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"147–156 147–156"},"PeriodicalIF":12.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01623","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143090992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a Privileged Scaffold for Inhibition of Sterol Transport Proteins through the Synthesis and Ring Distortion of Diverse, Pseudo-Natural Products
IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-08 DOI: 10.1021/acscentsci.4c0165710.1021/acscentsci.4c01657
Frederik Simonsen Bro, Laura Depta, Nienke J. Dekker, Hogan P. Bryce-Rogers, Maria Lillevang Madsen, Kaia Fiil Præstegaard, Tino Petersson, Thomas Whitmarsh-Everiss, Mariusz Kubus and Luca Laraia*, 

Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins. The fusion of a primary sterol scaffold with a range of different fragments found in natural products followed by various ring distortions allowed the synthesis of diverse sterol-inspired compounds. This led to the identification of a complex and three-dimensional spirooxepinoindole as a privileged scaffold for sterol transport proteins. With careful optimization of the scaffold, the selectivity could be directed toward a single transporter, as showcased by the development of a potent and selective Aster-A inhibitor. We suggest that the combination of different design strategies is generally applicable for the identification of potent and selective bioactive compounds with drug-like properties.

A privileged scaffold for sterol transporters was identified through fusion of a sterol scaffold and natural product fragments followed by ring distortions, leading to a selective Aster-A inhibitor.

{"title":"Identification of a Privileged Scaffold for Inhibition of Sterol Transport Proteins through the Synthesis and Ring Distortion of Diverse, Pseudo-Natural Products","authors":"Frederik Simonsen Bro,&nbsp;Laura Depta,&nbsp;Nienke J. Dekker,&nbsp;Hogan P. Bryce-Rogers,&nbsp;Maria Lillevang Madsen,&nbsp;Kaia Fiil Præstegaard,&nbsp;Tino Petersson,&nbsp;Thomas Whitmarsh-Everiss,&nbsp;Mariusz Kubus and Luca Laraia*,&nbsp;","doi":"10.1021/acscentsci.4c0165710.1021/acscentsci.4c01657","DOIUrl":"https://doi.org/10.1021/acscentsci.4c01657https://doi.org/10.1021/acscentsci.4c01657","url":null,"abstract":"<p >Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins. The fusion of a primary sterol scaffold with a range of different fragments found in natural products followed by various ring distortions allowed the synthesis of diverse sterol-inspired compounds. This led to the identification of a complex and three-dimensional spirooxepinoindole as a privileged scaffold for sterol transport proteins. With careful optimization of the scaffold, the selectivity could be directed toward a single transporter, as showcased by the development of a potent and selective Aster-A inhibitor. We suggest that the combination of different design strategies is generally applicable for the identification of potent and selective bioactive compounds with drug-like properties.</p><p >A privileged scaffold for sterol transporters was identified through fusion of a sterol scaffold and natural product fragments followed by ring distortions, leading to a selective Aster-A inhibitor.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"136–146 136–146"},"PeriodicalIF":12.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01657","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143091565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wash-free Imaging in Live Cells. 活细胞免洗成像
IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-06 eCollection Date: 2025-01-22 DOI: 10.1021/acscentsci.4c02083
Mahdi Hasan, Ashraf Brik
{"title":"Wash-free Imaging in Live Cells.","authors":"Mahdi Hasan, Ashraf Brik","doi":"10.1021/acscentsci.4c02083","DOIUrl":"10.1021/acscentsci.4c02083","url":null,"abstract":"","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"22-24"},"PeriodicalIF":12.7,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wash-free Imaging in Live Cells
IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-01-06 DOI: 10.1021/acscentsci.4c0208310.1021/acscentsci.4c02083
Mahdi Hasan,  and , Ashraf Brik*, 

Palladium-mediated arylation enables minimal labeling of peptides and proteins with small fluorogenic amino acids for wash-free imaging.

{"title":"Wash-free Imaging in Live Cells","authors":"Mahdi Hasan,&nbsp; and ,&nbsp;Ashraf Brik*,&nbsp;","doi":"10.1021/acscentsci.4c0208310.1021/acscentsci.4c02083","DOIUrl":"https://doi.org/10.1021/acscentsci.4c02083https://doi.org/10.1021/acscentsci.4c02083","url":null,"abstract":"<p >Palladium-mediated arylation enables minimal labeling of peptides and proteins with small fluorogenic amino acids for wash-free imaging.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 1","pages":"22–24 22–24"},"PeriodicalIF":12.7,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c02083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143090881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Central Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1