Aerothermal effects of squealer openings on a cavity tip in a turbine cascade

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE International Journal of Turbo & Jet-Engines Pub Date : 2023-09-25 DOI:10.1515/tjj-2023-0066
Zuhao Liu, Yi Cao, Chao Zhou, Zhiyuan Cao
{"title":"Aerothermal effects of squealer openings on a cavity tip in a turbine cascade","authors":"Zuhao Liu, Yi Cao, Chao Zhou, Zhiyuan Cao","doi":"10.1515/tjj-2023-0066","DOIUrl":null,"url":null,"abstract":"Abstract Both the aerodynamic and thermal performance are important for a high-pressure turbine design. This paper investigates aerothermal effects of opening on the suction side squealer of a cavity tip in a turbine cascade. There are four cases investigated, ‘Cavity’, ‘Opening 1’, ‘Opening 2’ and ‘Opening 3’. For Opening 1 with an opening area at 15 % axial chord, the opening outflow affects the near-tip flow mainly by interacting with the passage vortex, and the near tip loss increases by less than 3 %. For Opening 2 with an opening area at 12 % axial chord, the near tip loss is lower than Opening 1. By further rounding the edge of the opening area, the loss of the tip with opening is less than 1 % higher than the cavity tip. Nevertheless, the opening tip can achieve a reduction of the thermal load of the suction side squealer inner wall by up to 19 %.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/tjj-2023-0066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Both the aerodynamic and thermal performance are important for a high-pressure turbine design. This paper investigates aerothermal effects of opening on the suction side squealer of a cavity tip in a turbine cascade. There are four cases investigated, ‘Cavity’, ‘Opening 1’, ‘Opening 2’ and ‘Opening 3’. For Opening 1 with an opening area at 15 % axial chord, the opening outflow affects the near-tip flow mainly by interacting with the passage vortex, and the near tip loss increases by less than 3 %. For Opening 2 with an opening area at 12 % axial chord, the near tip loss is lower than Opening 1. By further rounding the edge of the opening area, the loss of the tip with opening is less than 1 % higher than the cavity tip. Nevertheless, the opening tip can achieve a reduction of the thermal load of the suction side squealer inner wall by up to 19 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涡轮叶栅空腔顶端的气动热效应
高压涡轮的气动性能和热性能是高压涡轮设计的重要内容。本文研究了涡轮叶栅空腔末端吸力侧尖瓣开度的气动热效应。调查了四种情况,“腔”,“开口1”,“开口2”和“开口3”。对于开口面积为轴向弦长15%的开口1,开口出口主要通过与通道涡的相互作用影响近尖流动,近尖损失增加幅度小于3%。当开口面积为轴向弦的12%时,开口2的近叶尖损失低于开口1。通过进一步圆取开孔区域的边缘,开孔尖端的损失比空腔尖端高不到1%。然而,开口尖端可以实现减少吸力侧尖叫器内壁的热负荷高达19%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
期刊最新文献
Effect of inlet diameter on the flow structure and performance for aluminum-based water-jet engine Multi-objective optimization of the aerodynamic performance of butterfly-shaped film cooling holes in rocket thrust chamber Simple model of turbine-based combined cycle propulsion system and smooth mode transition Experimental study on flow field and combustion characteristics of V-gutter and integrated flameholders Research on performance seeking control of turbofan engine in minimum hot spot temperature mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1