首页 > 最新文献

International Journal of Turbo & Jet-Engines最新文献

英文 中文
The International Journal of Turbo and Jet Engines 涡轮和喷气发动机国际期刊
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-12-25 DOI: 10.1515/tjj-2023-0101
Valery Sherbaum
{"title":"The International Journal of Turbo and Jet Engines","authors":"Valery Sherbaum","doi":"10.1515/tjj-2023-0101","DOIUrl":"https://doi.org/10.1515/tjj-2023-0101","url":null,"abstract":"","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"42 4","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138943639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on high-bandwidth linear active disturbance rejection control method for variable speed turboshaft engine 变速涡轮轴发动机高带宽线性主动干扰抑制控制方法研究
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-12-19 DOI: 10.1515/tjj-2023-0090
Bo Huang, Wenbo Li, Yerong Peng, Jie Song
Abstract The wide flight range and high torsional vibration frequency of high-speed helicopters impose stricter criteria for the high-bandwidth control of turboshaft engines. Consequently, research is underway to implement a high-bandwidth control method for turboshaft engines using the linear active disturbance rejection control (LADRC) theory. Initially, the LADRC is designed based on the mathematical model of the integrated helicopter/engine system. To address the challenge of maintaining control quality with varying speed reference commands for the power turbine, an improved LADRC method with tracking differentiators (TD) is developed. Numerical simulations comparing the control effectiveness of LADRC with TD to cascade PID and conventional LADRC methods are conducted. The results demonstrate that the improved LADRC gains have a wider tuning range than the LADRC controller, and the power turbine speed tracking effect of LADRC with TD is optimal. It is more conducive to accomplish high-bandwidth control of turboshaft engine with variable rotational speed.
摘要 高速直升机飞行范围广、扭转振动频率高,对涡轮轴发动机的高带宽控制提出了更严格的要求。因此,研究人员正在利用线性主动干扰抑制控制(LADRC)理论为涡轮轴发动机实现高带宽控制方法。最初,LADRC 是根据直升机/发动机集成系统的数学模型设计的。为了解决在动力涡轮机速度参考指令变化时保持控制质量的难题,开发了一种带有跟踪微分器(TD)的改进型 LADRC 方法。我们进行了数值模拟,比较了带有 TD 的 LADRC 与级联 PID 和传统 LADRC 方法的控制效果。结果表明,与 LADRC 控制器相比,改进的 LADRC 增益具有更宽的调节范围,带 TD 的 LADRC 功率涡轮机转速跟踪效果最佳。这更有利于完成对转速可变的涡轮轴发动机的高带宽控制。
{"title":"Research on high-bandwidth linear active disturbance rejection control method for variable speed turboshaft engine","authors":"Bo Huang, Wenbo Li, Yerong Peng, Jie Song","doi":"10.1515/tjj-2023-0090","DOIUrl":"https://doi.org/10.1515/tjj-2023-0090","url":null,"abstract":"Abstract The wide flight range and high torsional vibration frequency of high-speed helicopters impose stricter criteria for the high-bandwidth control of turboshaft engines. Consequently, research is underway to implement a high-bandwidth control method for turboshaft engines using the linear active disturbance rejection control (LADRC) theory. Initially, the LADRC is designed based on the mathematical model of the integrated helicopter/engine system. To address the challenge of maintaining control quality with varying speed reference commands for the power turbine, an improved LADRC method with tracking differentiators (TD) is developed. Numerical simulations comparing the control effectiveness of LADRC with TD to cascade PID and conventional LADRC methods are conducted. The results demonstrate that the improved LADRC gains have a wider tuning range than the LADRC controller, and the power turbine speed tracking effect of LADRC with TD is optimal. It is more conducive to accomplish high-bandwidth control of turboshaft engine with variable rotational speed.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" 6","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138961843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of inlet structure on combustion flow structure in magnesium powder fueled water ramjet engine 镁粉燃料水冲压喷气发动机进气道结构对燃烧流结构的影响
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-12-12 DOI: 10.1515/tjj-2023-0080
Wei Xu, Zhi-Long Yang, Yunkai Wu, Guo-Yu Ding, Rui Xue, Jun-Li Liu, Hai-Jun Sun
Abstract Different inlet structures have a significant impact on the internal flow characteristics of a solid-magnesium powder water ramjet engine. Based on the magnesium-water reaction model, a computational fluid dynamics (CFD) method is applied to establish a numerical simulation method for the internal flow field of the engine, and the internal flow characteristics of the engine under different inlet structure conditions are studied. The simulation results show that high-temperature gas can effectively promote the ignition of magnesium powder at the top of the combustion chamber, while accelerating the evaporation of the first inlet water and increasing the combustion rate of magnesium powder. The secondary inlet has the most significant effect on the temperature inside the combustion chamber. When the secondary inlet flow rate increases towards the top of the combustion chamber, it increases the amount of heat absorbed by the evaporating water at the top of the chamber, thereby reducing the temperature at the top of the combustion chamber. However, when the flow rate is low, it results in insufficient oxidizer at the top of the combustion chamber, which is unfavorable for the combustion of magnesium powder.
不同进气道结构对固体镁粉水冲压发动机内部流动特性影响较大。基于镁水反应模型,应用计算流体动力学(CFD)方法建立了发动机内部流场的数值模拟方法,研究了不同进气道结构条件下发动机内部流动特性。仿真结果表明,高温气体能有效促进燃烧室顶部镁粉的点火,同时加速第一入口水的蒸发,提高镁粉的燃烧速度。二次进气道对燃烧室温度的影响最为显著。当二次进口流量向燃烧室顶部增加时,增加了燃烧室顶部蒸发水吸收的热量,从而降低了燃烧室顶部的温度。但当流量较低时,会导致燃烧室顶部氧化剂不足,不利于镁粉的燃烧。
{"title":"Influence of inlet structure on combustion flow structure in magnesium powder fueled water ramjet engine","authors":"Wei Xu, Zhi-Long Yang, Yunkai Wu, Guo-Yu Ding, Rui Xue, Jun-Li Liu, Hai-Jun Sun","doi":"10.1515/tjj-2023-0080","DOIUrl":"https://doi.org/10.1515/tjj-2023-0080","url":null,"abstract":"Abstract Different inlet structures have a significant impact on the internal flow characteristics of a solid-magnesium powder water ramjet engine. Based on the magnesium-water reaction model, a computational fluid dynamics (CFD) method is applied to establish a numerical simulation method for the internal flow field of the engine, and the internal flow characteristics of the engine under different inlet structure conditions are studied. The simulation results show that high-temperature gas can effectively promote the ignition of magnesium powder at the top of the combustion chamber, while accelerating the evaporation of the first inlet water and increasing the combustion rate of magnesium powder. The secondary inlet has the most significant effect on the temperature inside the combustion chamber. When the secondary inlet flow rate increases towards the top of the combustion chamber, it increases the amount of heat absorbed by the evaporating water at the top of the chamber, thereby reducing the temperature at the top of the combustion chamber. However, when the flow rate is low, it results in insufficient oxidizer at the top of the combustion chamber, which is unfavorable for the combustion of magnesium powder.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"27 11","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
C conjugate heat transfer simulation of swirl internal cooling on blade leading edge 叶片前缘漩涡内冷却的 C 共轭传热模拟
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-11-29 DOI: 10.1515/tjj-2023-0051
Yuting Jiang, Haosu Zhang, Kang Huang, Biao Liu, Yibin Tan, Hai Yu
Abstract Swirl cooling can not only increase the area of the heat exchange wall covered by the coolant, but also improve the average heat transfer intensity and uniformity of the target surface. SST k-ω turbulence model is utilized in the conjugate heat transfer numerical simulation. Based on C3X blades, leading edge swirl cooling structure of the corresponding areas are modified. The flow and heat transfer characteristics of swirl cooling are analyzed at different cross-sections and positions. It is found that there exists an optimal aspect ratio and hole spacing to minimize the temperature gradient on the swirl cavity wall. The swirling motion in the swirl cavity can significantly increase the heat transfer coefficient of the wall surface.
摘要 涡流冷却不仅能增加冷却剂覆盖的热交换壁面积,还能提高目标表面的平均传热强度和均匀性。共轭传热数值模拟采用了 SST k-ω 湍流模型。在 C3X 叶片的基础上,对相应区域的前缘漩涡冷却结构进行了修改。分析了不同截面和位置下漩涡冷却的流动和传热特性。结果发现,存在一个最佳的长径比和孔距,可以使漩涡腔壁的温度梯度最小。漩涡腔中的漩涡运动可显著提高腔壁表面的传热系数。
{"title":"C conjugate heat transfer simulation of swirl internal cooling on blade leading edge","authors":"Yuting Jiang, Haosu Zhang, Kang Huang, Biao Liu, Yibin Tan, Hai Yu","doi":"10.1515/tjj-2023-0051","DOIUrl":"https://doi.org/10.1515/tjj-2023-0051","url":null,"abstract":"Abstract Swirl cooling can not only increase the area of the heat exchange wall covered by the coolant, but also improve the average heat transfer intensity and uniformity of the target surface. SST k-ω turbulence model is utilized in the conjugate heat transfer numerical simulation. Based on C3X blades, leading edge swirl cooling structure of the corresponding areas are modified. The flow and heat transfer characteristics of swirl cooling are analyzed at different cross-sections and positions. It is found that there exists an optimal aspect ratio and hole spacing to minimize the temperature gradient on the swirl cavity wall. The swirling motion in the swirl cavity can significantly increase the heat transfer coefficient of the wall surface.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"51 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139213773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of velocity ratio and Mach number on thin lip coaxial jet 速度比和马赫数对薄唇同轴射流的影响
IF 0.9 4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-11-16 DOI: 10.1515/tjj-2023-0086
Irish Angelin Scwartz, Naren Shankar Rathakrishnan, Sathish Kumar Kumar, Vijayaraja Kengaiah, R. Ethirajan
Abstract The effect of nozzle lip thickness and velocity ratio on coaxial subsonic jet mixing, at different Mach numbers, has been studied experimentally and numerically. Decay of coaxial subsonic jets emanating from coaxial nozzles of lip thickness 0.7, 1.7 and 2.65 mm with velocity ratio (VR) from 0.2 to 1.0 at primary jet exit Mach numbers of 0.6, 0.8 and 1.0 has been studied. Free jet without co-flow (VR0) was also studied for comparison. Jet centerline Mach number decay, turbulence and velocity variation in the radial direction are analyzed. The results show that mixing the coaxial jet at a low-velocity ratio is better than a high-velocity ratio, at all Mach numbers of the present study. The nozzle lip thickness has a significant influence on the secondary jet. Mixing of the jet in the presence of VR0.2 coaxial jet is found to be the highest. Characteristic decay of Mach 0.8 and 1.0 jet for lip thickness 1.7 and 2.65 mm is faster than lip thickness 0.7 mm. For a given lip thickness, increasing of velocity ratio is found to retard the mixing between primary and secondary jets.
摘要 在不同马赫数下,对喷嘴唇厚和速度比对同轴亚音速射流混合的影响进行了实验和数值研究。研究了在主射流出口马赫数为 0.6、0.8 和 1.0 时,唇缘厚度分别为 0.7、1.7 和 2.65 毫米、速度比 (VR) 为 0.2 至 1.0 的同轴亚音速射流的衰减情况。为了进行比较,还研究了不带共流(VR0)的自由射流。分析了射流中心线马赫数衰减、湍流和径向速度变化。结果表明,在本研究的所有马赫数下,低速比同轴射流的混合效果都优于高速比。喷嘴唇厚对二次射流有显著影响。在有 VR0.2 同轴射流的情况下,射流的混合程度最高。唇缘厚度为 1.7 毫米和 2.65 毫米时,马赫数为 0.8 和 1.0 的射流的特征衰减速度快于唇缘厚度为 0.7 毫米的射流。在给定唇厚的情况下,速度比的增加会延缓主射流和副射流之间的混合。
{"title":"Effect of velocity ratio and Mach number on thin lip coaxial jet","authors":"Irish Angelin Scwartz, Naren Shankar Rathakrishnan, Sathish Kumar Kumar, Vijayaraja Kengaiah, R. Ethirajan","doi":"10.1515/tjj-2023-0086","DOIUrl":"https://doi.org/10.1515/tjj-2023-0086","url":null,"abstract":"Abstract The effect of nozzle lip thickness and velocity ratio on coaxial subsonic jet mixing, at different Mach numbers, has been studied experimentally and numerically. Decay of coaxial subsonic jets emanating from coaxial nozzles of lip thickness 0.7, 1.7 and 2.65 mm with velocity ratio (VR) from 0.2 to 1.0 at primary jet exit Mach numbers of 0.6, 0.8 and 1.0 has been studied. Free jet without co-flow (VR0) was also studied for comparison. Jet centerline Mach number decay, turbulence and velocity variation in the radial direction are analyzed. The results show that mixing the coaxial jet at a low-velocity ratio is better than a high-velocity ratio, at all Mach numbers of the present study. The nozzle lip thickness has a significant influence on the secondary jet. Mixing of the jet in the presence of VR0.2 coaxial jet is found to be the highest. Characteristic decay of Mach 0.8 and 1.0 jet for lip thickness 1.7 and 2.65 mm is faster than lip thickness 0.7 mm. For a given lip thickness, increasing of velocity ratio is found to retard the mixing between primary and secondary jets.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"32 3","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139267346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated modeling and coupling characteristics analysis of helicopter/engine/infrared suppressor 直升机/发动机/红外抑制器集成建模与耦合特性分析
4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-11-14 DOI: 10.1515/tjj-2023-0060
Benlin Cheng, Xing Huang, Chuang Ji, Wencheng Zhong, Haibo Zhang
Abstract In order to explore the influence of the infrared stealth technology on the performance of the integrated helicopter/engine system, an integrated modeling method of helicopter/engine/infrared suppressor is proposed. Firstly, based on the power calculation model of the helicopter, combined with the high-precision turboshaft engine component-level model, an integrated simulation platform is built, which takes into account the nonlinear characteristics. Then, the aerodynamic characteristics of infrared suppressors under different engine operation states are studied by CFD numerical computation method, and the infrared radiation characteristics are obtained through combining the positive and negative ray tracing method and narrow band model method. Ultimately, the utilization of the power turbine outlet stagnation pressure is employed as the pivotal interface linking the turboshaft engine and the infrared suppressor in order to formulate an integrated model encompassing the helicopter, engine, and infrared suppressor subsystems. The simulation results demonstrate that compared with the conventional exhaust system, the application of the infrared suppressor greatly enhances the stealth performance of the helicopter, but also results in the unexpected decrease in engine output power. Moreover, the specific fuel consumption of the turboshaft engine increase and the compressor surge margin decreases in case of the consistent flight condition.
摘要为了探索红外隐身技术对直升机/发动机集成系统性能的影响,提出了一种直升机/发动机/红外抑制器集成建模方法。首先,在直升机动力计算模型的基础上,结合高精度涡轴发动机部件级模型,建立了考虑非线性特性的综合仿真平台;然后,采用CFD数值计算方法研究了红外消声器在发动机不同工作状态下的气动特性,并结合正负射线追迹法和窄带模型法得到了红外辐射特性。最后,利用动力涡轮出口滞止压力作为连接涡轴发动机和红外抑制器的关键接口,建立了包含直升机、发动机和红外抑制器子系统的集成模型。仿真结果表明,与传统排气系统相比,红外抑制器的应用大大提高了直升机的隐身性能,但也导致了发动机输出功率的意外下降。在相同的飞行条件下,涡轮轴发动机的比油耗增加,压气机喘振裕度减小。
{"title":"Integrated modeling and coupling characteristics analysis of helicopter/engine/infrared suppressor","authors":"Benlin Cheng, Xing Huang, Chuang Ji, Wencheng Zhong, Haibo Zhang","doi":"10.1515/tjj-2023-0060","DOIUrl":"https://doi.org/10.1515/tjj-2023-0060","url":null,"abstract":"Abstract In order to explore the influence of the infrared stealth technology on the performance of the integrated helicopter/engine system, an integrated modeling method of helicopter/engine/infrared suppressor is proposed. Firstly, based on the power calculation model of the helicopter, combined with the high-precision turboshaft engine component-level model, an integrated simulation platform is built, which takes into account the nonlinear characteristics. Then, the aerodynamic characteristics of infrared suppressors under different engine operation states are studied by CFD numerical computation method, and the infrared radiation characteristics are obtained through combining the positive and negative ray tracing method and narrow band model method. Ultimately, the utilization of the power turbine outlet stagnation pressure is employed as the pivotal interface linking the turboshaft engine and the infrared suppressor in order to formulate an integrated model encompassing the helicopter, engine, and infrared suppressor subsystems. The simulation results demonstrate that compared with the conventional exhaust system, the application of the infrared suppressor greatly enhances the stealth performance of the helicopter, but also results in the unexpected decrease in engine output power. Moreover, the specific fuel consumption of the turboshaft engine increase and the compressor surge margin decreases in case of the consistent flight condition.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"26 19","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134991798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the ending position of controllable speed casing on a transonic compressor rotor tip leakage flow 可调速机匣端部位置对跨声速压气机转子叶尖泄漏流动的影响
4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-11-01 DOI: 10.1515/tjj-2023-0016
Jiayi Zhao, Wanyang Wu, Jingjun Zhong
Abstract The controllable speed casing is a novel casing treatment approach that makes partial casing rotate at adjustable and proper speed to achieve stability expansion. Structural parameters of casing treatment are found to influence the effect of stability expansion by many studies. In this paper, the effect of the ending position of the rotatable ring in controllable speed casing on the tip leakage flow and the stability expansion was studied numerically. The results show that when the rotatable ring rotates at 30 % and 50 % rotor design speed, the controllable speed casing achieves the stability expansion of the compressor rotor no matter where the ending position is. The upstream movement of the ending position decreases the axial pressure gradient in the middle and rear of the tip passage. It pushes the shock wave downstream, which reduces blockage region at tip leading edge. The upstream movement of the ending position contributes to an approximately linear increase in the stable operating margin.
可控转速套管是一种新颖的套管处理方法,它使部分套管以可调的适当转速旋转,以达到稳定膨胀的目的。大量研究发现,套管处理的结构参数会影响扩稳效果。本文采用数值计算方法,研究了可控转速机匣中可旋转环端部位置对机匣叶尖泄漏流动和稳定膨胀的影响。结果表明:当可转环以30%和50%转子设计转速旋转时,无论末端位置在哪里,可调速机匣都能实现压气机转子的稳定膨胀;端部位置的上游运动降低了叶顶通道中后部的轴向压力梯度。它将激波推向下游,减少了叶顶前缘的堵塞区域。末端位置的上游运动有助于稳定运营边际的近似线性增长。
{"title":"Influence of the ending position of controllable speed casing on a transonic compressor rotor tip leakage flow","authors":"Jiayi Zhao, Wanyang Wu, Jingjun Zhong","doi":"10.1515/tjj-2023-0016","DOIUrl":"https://doi.org/10.1515/tjj-2023-0016","url":null,"abstract":"Abstract The controllable speed casing is a novel casing treatment approach that makes partial casing rotate at adjustable and proper speed to achieve stability expansion. Structural parameters of casing treatment are found to influence the effect of stability expansion by many studies. In this paper, the effect of the ending position of the rotatable ring in controllable speed casing on the tip leakage flow and the stability expansion was studied numerically. The results show that when the rotatable ring rotates at 30 % and 50 % rotor design speed, the controllable speed casing achieves the stability expansion of the compressor rotor no matter where the ending position is. The upstream movement of the ending position decreases the axial pressure gradient in the middle and rear of the tip passage. It pushes the shock wave downstream, which reduces blockage region at tip leading edge. The upstream movement of the ending position contributes to an approximately linear increase in the stable operating margin.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"277 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135273170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of tab shape, length, and placement on the over-expanded free jet at Mach 2.0 标签形状、长度和位置对马赫2.0时过度膨胀自由射流的影响
4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-10-18 DOI: 10.1515/tjeng-2023-0079
Srinivasa Rao Lavala, Partha Mondal, Sudip Das
Abstract Experiments have been carried out to investigate the over expanded free jet at Mach number 2.0 without and with tabs of different cross-sectional shapes, tab length penetration into the jet core defined as blockage ratio, and symmetrical and asymmetrical placement of tabs at the jet exit. The cross-sectional shapes such as triangular, square, and circular have been studied with the penetration depth of 3 %, 7 %, and 11 % blockage. The Pitot tube and Schlieren flow visualization were carried out in experiments. The basic features of the jet with Mach disk, shock cell, and its distortion with the adoption of tabs at various nozzle pressure ratios indicate a definite influence that helps in the reduction of the core jet length. This characteristic is also influenced by changes in tab cross-section and length of penetration. Since the basic jet has three-dimensional structures, the asymmetric placement of tabs is beneficial compared to the symmetric orientation of tabs. The jet width increases with adoption of these tabs and different shapes. Whereas, a maximum core jet length reduction of the order of 60 % could be achieved using the present techniques.
本文对马赫数为2.0时的过膨胀自由射流进行了实验研究,研究了有无不同截面形状的叶片、叶片在射流核心的穿透长度(以堵塞比定义)以及叶片在射流出口的对称和不对称布置。在3%、7%和11%的堵塞深度下,研究了三角形、正方形和圆形等截面形状。实验中进行了皮托管和纹影流动显示。具有马赫盘、激波单元的射流的基本特征以及在不同喷嘴压力比下采用压片的射流的畸变表明,这对缩短核心射流长度有一定的影响。这种特性还受压片截面和穿透长度变化的影响。由于基本射流具有三维结构,相对于对称的取向,不对称的标签位置是有益的。喷流宽度随着这些标签和不同形状的采用而增加。然而,使用目前的技术可以实现岩心射流长度最大减少60%。
{"title":"Effect of tab shape, length, and placement on the over-expanded free jet at Mach 2.0","authors":"Srinivasa Rao Lavala, Partha Mondal, Sudip Das","doi":"10.1515/tjeng-2023-0079","DOIUrl":"https://doi.org/10.1515/tjeng-2023-0079","url":null,"abstract":"Abstract Experiments have been carried out to investigate the over expanded free jet at Mach number 2.0 without and with tabs of different cross-sectional shapes, tab length penetration into the jet core defined as blockage ratio, and symmetrical and asymmetrical placement of tabs at the jet exit. The cross-sectional shapes such as triangular, square, and circular have been studied with the penetration depth of 3 %, 7 %, and 11 % blockage. The Pitot tube and Schlieren flow visualization were carried out in experiments. The basic features of the jet with Mach disk, shock cell, and its distortion with the adoption of tabs at various nozzle pressure ratios indicate a definite influence that helps in the reduction of the core jet length. This characteristic is also influenced by changes in tab cross-section and length of penetration. Since the basic jet has three-dimensional structures, the asymmetric placement of tabs is beneficial compared to the symmetric orientation of tabs. The jet width increases with adoption of these tabs and different shapes. Whereas, a maximum core jet length reduction of the order of 60 % could be achieved using the present techniques.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135943849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of tab shape, length, and placement on the over-expanded free jet at Mach 2.0 标签形状、长度和位置对马赫2.0时过度膨胀自由射流的影响
4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-10-18 DOI: 10.1515/tjj-2023-0079
Srinivasa Rao Lavala, Partha Mondal, Sudip Das
Abstract Experiments have been carried out to investigate the over expanded free jet at Mach number 2.0 without and with tabs of different cross-sectional shapes, tab length penetration into the jet core defined as blockage ratio, and symmetrical and asymmetrical placement of tabs at the jet exit. The cross-sectional shapes such as triangular, square, and circular have been studied with the penetration depth of 3 %, 7 %, and 11 % blockage. The Pitot tube and Schlieren flow visualization were carried out in experiments. The basic features of the jet with Mach disk, shock cell, and its distortion with the adoption of tabs at various nozzle pressure ratios indicate a definite influence that helps in the reduction of the core jet length. This characteristic is also influenced by changes in tab cross-section and length of penetration. Since the basic jet has three-dimensional structures, the asymmetric placement of tabs is beneficial compared to the symmetric orientation of tabs. The jet width increases with adoption of these tabs and different shapes. Whereas, a maximum core jet length reduction of the order of 60 % could be achieved using the present techniques.
本文对马赫数为2.0时的过膨胀自由射流进行了实验研究,研究了有无不同截面形状的叶片、叶片在射流核心的穿透长度(以堵塞比定义)以及叶片在射流出口的对称和不对称布置。在3%、7%和11%的堵塞深度下,研究了三角形、正方形和圆形等截面形状。实验中进行了皮托管和纹影流动显示。具有马赫盘、激波单元的射流的基本特征以及在不同喷嘴压力比下采用压片的射流的畸变表明,这对缩短核心射流长度有一定的影响。这种特性还受压片截面和穿透长度变化的影响。由于基本射流具有三维结构,相对于对称的取向,不对称的标签位置是有益的。喷流宽度随着这些标签和不同形状的采用而增加。然而,使用目前的技术可以实现岩心射流长度最大减少60%。
{"title":"Effect of tab shape, length, and placement on the over-expanded free jet at Mach 2.0","authors":"Srinivasa Rao Lavala, Partha Mondal, Sudip Das","doi":"10.1515/tjj-2023-0079","DOIUrl":"https://doi.org/10.1515/tjj-2023-0079","url":null,"abstract":"Abstract Experiments have been carried out to investigate the over expanded free jet at Mach number 2.0 without and with tabs of different cross-sectional shapes, tab length penetration into the jet core defined as blockage ratio, and symmetrical and asymmetrical placement of tabs at the jet exit. The cross-sectional shapes such as triangular, square, and circular have been studied with the penetration depth of 3 %, 7 %, and 11 % blockage. The Pitot tube and Schlieren flow visualization were carried out in experiments. The basic features of the jet with Mach disk, shock cell, and its distortion with the adoption of tabs at various nozzle pressure ratios indicate a definite influence that helps in the reduction of the core jet length. This characteristic is also influenced by changes in tab cross-section and length of penetration. Since the basic jet has three-dimensional structures, the asymmetric placement of tabs is beneficial compared to the symmetric orientation of tabs. The jet width increases with adoption of these tabs and different shapes. Whereas, a maximum core jet length reduction of the order of 60 % could be achieved using the present techniques.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135884687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of mode transition control system for tandem TBCC engine based on direct performance parameters closed-loop control 基于直接性能参数闭环控制的串联TBCC发动机模式转换控制系统设计
4区 工程技术 Q4 ENGINEERING, AEROSPACE Pub Date : 2023-10-12 DOI: 10.1515/tjj-2023-0069
Zhihua Xi, Cheng Chen, Ming Chen, Haibo Zhang
Abstract This paper conducts a study on closed-loop control of engine performance parameters during mode transition process of TBCC engine based on artificial intelligence method. Firstly, a composite modeling method based on stepwise regression analysis and batch normalization-depth neural network is proposed to establish the on-board model during mode transition to estimate the thrust and inlet airflow in real-time. Secondly, based on the hybrid penalty function-particle swarm optimization algorithm, a mode transition control schedule applicable to the closed-loop control of thrust and inlet airflow is developed. Finally, a data processing method based on similarity conversion is proposed to extend the applicable envelope range of the mode transition control system. The transition time is shortened by 33.3 %, and the fluctuations of thrust and inlet airflow are reduced by 1.33 % and 10.77 %, respectively. When the control system is applied to the off-design mode transition process, a satisfactory mode transition performance is also obtained.
本文基于人工智能方法对TBCC发动机模式转换过程中发动机性能参数的闭环控制进行了研究。首先,提出了一种基于逐步回归分析和批量归一化深度神经网络的复合建模方法,建立了模态转换时的机载模型,实时估计了推力和进气道气流;其次,基于惩罚函数-粒子群混合优化算法,提出了适用于推力和进气道闭环控制的模式转换控制方案;最后,提出了一种基于相似度转换的数据处理方法,以扩大模态转换控制系统的适用包络范围。过渡时间缩短了33.3%,推力和入口气流波动分别减少了1.33%和10.77%。将控制系统应用于非设计模态转换过程,也获得了满意的模态转换性能。
{"title":"Design of mode transition control system for tandem TBCC engine based on direct performance parameters closed-loop control","authors":"Zhihua Xi, Cheng Chen, Ming Chen, Haibo Zhang","doi":"10.1515/tjj-2023-0069","DOIUrl":"https://doi.org/10.1515/tjj-2023-0069","url":null,"abstract":"Abstract This paper conducts a study on closed-loop control of engine performance parameters during mode transition process of TBCC engine based on artificial intelligence method. Firstly, a composite modeling method based on stepwise regression analysis and batch normalization-depth neural network is proposed to establish the on-board model during mode transition to estimate the thrust and inlet airflow in real-time. Secondly, based on the hybrid penalty function-particle swarm optimization algorithm, a mode transition control schedule applicable to the closed-loop control of thrust and inlet airflow is developed. Finally, a data processing method based on similarity conversion is proposed to extend the applicable envelope range of the mode transition control system. The transition time is shortened by 33.3 %, and the fluctuations of thrust and inlet airflow are reduced by 1.33 % and 10.77 %, respectively. When the control system is applied to the off-design mode transition process, a satisfactory mode transition performance is also obtained.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135923765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Turbo & Jet-Engines
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1