Qualitative Analysis of RLC Circuit Described by Hilfer Derivative with Numerical Treatment Using the Lagrange Polynomial Method

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Fractal and Fractional Pub Date : 2023-11-04 DOI:10.3390/fractalfract7110804
Naveen S., Parthiban V., Mohamed I. Abbas
{"title":"Qualitative Analysis of RLC Circuit Described by Hilfer Derivative with Numerical Treatment Using the Lagrange Polynomial Method","authors":"Naveen S., Parthiban V., Mohamed I. Abbas","doi":"10.3390/fractalfract7110804","DOIUrl":null,"url":null,"abstract":"This paper delves into an examination of the existence, uniqueness, and stability properties of a non-local integro-differential equation featuring the Hilfer fractional derivative with order ω∈(1,2) for the RLC model. Based on Schaefer’s fixed point theorem and Banach’s contraction principle, the existence and uniqueness results are established. Furthermore, Ulam–Hyers and Ulam–Hyers–Rassias stability results for the boundary value problem of the RLC model are discussed. To showcase the practicality and efficacy of our theoretical findings, a two-step Lagrange polynomial interpolation method is applied to solve some numerical examples.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"39 15","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110804","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper delves into an examination of the existence, uniqueness, and stability properties of a non-local integro-differential equation featuring the Hilfer fractional derivative with order ω∈(1,2) for the RLC model. Based on Schaefer’s fixed point theorem and Banach’s contraction principle, the existence and uniqueness results are established. Furthermore, Ulam–Hyers and Ulam–Hyers–Rassias stability results for the boundary value problem of the RLC model are discussed. To showcase the practicality and efficacy of our theoretical findings, a two-step Lagrange polynomial interpolation method is applied to solve some numerical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用拉格朗日多项式方法对Hilfer导数描述的RLC电路进行定性分析和数值处理
本文研究了RLC模型具有阶ω∈(1,2)阶Hilfer分数阶导数的非局部积分微分方程的存在性、唯一性和稳定性。基于Schaefer的不动点定理和Banach的收缩原理,建立了存在唯一性结果。进一步讨论了RLC模型边值问题的Ulam-Hyers和Ulam-Hyers - rassias稳定性结果。为了展示我们的理论发现的实用性和有效性,应用两步拉格朗日多项式插值方法求解了一些数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
期刊最新文献
On the Impacts of the Global Sea Level Dynamics Research on Application of Fractional Calculus Operator in Image Underlying Processing The Multiscale Principle in Nature (Principium luxuriæ): Linking Multiscale Thermodynamics to Living and Non-Living Complex Systems A Numerical Scheme and Application to the Fractional Integro-Differential Equation Using Fixed-Point Techniques Correction: Panchal et al. 3D FEM Simulation and Analysis of Fractal Electrode-Based FBAR Resonator for Tetrachloroethene (PCE) Gas Detection. Fractal Fract. 2022, 6, 491
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1