{"title":"Influence of the converter transformer valve-side bushing fault on commutation reactance protection and improvement scheme","authors":"","doi":"10.24425/aee.2023.146046","DOIUrl":null,"url":null,"abstract":": Commutation reactance is an important component in the voltage-source converter-based high-voltage direct current (VSC–HVDC) transmission system. Due to its connection to the converter, when there is a fault occurring on the valve-side bushing of a converter transformer, the nonlinearity operation of the converter complicates the characteristics of current flowing through commutation reactance, which may lead to mal-operation of its overcurrent protection. It is of great significance to study the performance of commutation reactance overcurrent protection under this fault condition and propose corresponding improvement measures to ensure the safe and stable operation of AC and DC systems. In the VSC–HVDC system with the pseudo-bipolar structure of a three-phase two-level voltage source converter, the valve has six working periods in a power frequency cycle, and each period is divided into five working states. According to the difference be-tween the fault phase and non-fault phase of the conductive bridge arms at the time of fault occurrence, these five working states are merged into two categories. On this basis, various faults of the valve-side bushing of a converter transformer are analyzed, and the conclusion is drawn that the asymmetric fault of valve-side bushing can","PeriodicalId":45464,"journal":{"name":"Archives of Electrical Engineering","volume":"190 S522","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/aee.2023.146046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
: Commutation reactance is an important component in the voltage-source converter-based high-voltage direct current (VSC–HVDC) transmission system. Due to its connection to the converter, when there is a fault occurring on the valve-side bushing of a converter transformer, the nonlinearity operation of the converter complicates the characteristics of current flowing through commutation reactance, which may lead to mal-operation of its overcurrent protection. It is of great significance to study the performance of commutation reactance overcurrent protection under this fault condition and propose corresponding improvement measures to ensure the safe and stable operation of AC and DC systems. In the VSC–HVDC system with the pseudo-bipolar structure of a three-phase two-level voltage source converter, the valve has six working periods in a power frequency cycle, and each period is divided into five working states. According to the difference be-tween the fault phase and non-fault phase of the conductive bridge arms at the time of fault occurrence, these five working states are merged into two categories. On this basis, various faults of the valve-side bushing of a converter transformer are analyzed, and the conclusion is drawn that the asymmetric fault of valve-side bushing can
期刊介绍:
The journal publishes original papers in the field of electrical engineering which covers, but not limited to, the following scope: - Control - Electrical machines and transformers - Electrical & magnetic fields problems - Electric traction - Electro heat - Fuel cells, micro machines, hybrid vehicles - Nondestructive testing & Nondestructive evaluation - Electrical power engineering - Power electronics