Performance Evaluation of Emerging Perovskite Photovoltaic Energy-Harvesting System for BIPV Applications

IF 7 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Smart Cities Pub Date : 2023-09-13 DOI:10.3390/smartcities6050110
Yerassyl Olzhabay, Muhammad N. Hamidi, Dahaman Ishak, Arjuna Marzuki, Annie Ng, Ikechi A. Ukaegbu
{"title":"Performance Evaluation of Emerging Perovskite Photovoltaic Energy-Harvesting System for BIPV Applications","authors":"Yerassyl Olzhabay, Muhammad N. Hamidi, Dahaman Ishak, Arjuna Marzuki, Annie Ng, Ikechi A. Ukaegbu","doi":"10.3390/smartcities6050110","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) are emerging photovoltaics (PVs) with promising optoelectronic characteristics. PSCs can be semitransparent (ST), which is beneficial in many innovative applications, including building-integrated photovoltaics (BIPVs). While PSCs exhibit excellent performance potential, enhancements in their stability and scalable manufacturing are required before they can be widely deployed. This work evaluates the real-world effectiveness of using PSCs in BIPVs to accelerate the development progress toward practical implementation. Given the present constraints on PSC module size and efficiency, bus stop shelters are selected for investigation in this work, as they provide a suitably scaled application representing a realistic near-term test case for early-stage research and engineering. An energy-harvesting system for a bus stop shelter in Astana, Kazakhstan, demonstrates the potential performance evaluation platform that can be used for perovskite solar cell modules (PSCMs) in BIPVs. The system includes maximum power point tracking (MPPT) and charge controllers, which can supply PSCM energy to the electronic load. Based on our design, the bus stop shelter has non-transparent and ST PSCMs on the roof and sides, respectively. May (best-case) and December (worst-case) scenarios are considered. According to the results, the PSCMs-equipped bus stop shelter can generate sufficient daily energy for load even in a worst-case scenario.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":"26 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/smartcities6050110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) are emerging photovoltaics (PVs) with promising optoelectronic characteristics. PSCs can be semitransparent (ST), which is beneficial in many innovative applications, including building-integrated photovoltaics (BIPVs). While PSCs exhibit excellent performance potential, enhancements in their stability and scalable manufacturing are required before they can be widely deployed. This work evaluates the real-world effectiveness of using PSCs in BIPVs to accelerate the development progress toward practical implementation. Given the present constraints on PSC module size and efficiency, bus stop shelters are selected for investigation in this work, as they provide a suitably scaled application representing a realistic near-term test case for early-stage research and engineering. An energy-harvesting system for a bus stop shelter in Astana, Kazakhstan, demonstrates the potential performance evaluation platform that can be used for perovskite solar cell modules (PSCMs) in BIPVs. The system includes maximum power point tracking (MPPT) and charge controllers, which can supply PSCM energy to the electronic load. Based on our design, the bus stop shelter has non-transparent and ST PSCMs on the roof and sides, respectively. May (best-case) and December (worst-case) scenarios are considered. According to the results, the PSCMs-equipped bus stop shelter can generate sufficient daily energy for load even in a worst-case scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于BIPV应用的新型钙钛矿光伏能量收集系统的性能评价
钙钛矿太阳能电池(PSCs)是一种新兴的光电材料,具有良好的光电特性。PSCs可以是半透明的(ST),这在许多创新应用中是有益的,包括建筑集成光伏(bipv)。虽然psc表现出优异的性能潜力,但在广泛部署之前,需要增强其稳定性和可扩展制造。这项工作评估了在bipv中使用psc的实际有效性,以加速实际实施的开发进程。考虑到目前对PSC模块尺寸和效率的限制,本研究选择公交车站候车亭进行调查,因为它们为早期研究和工程提供了一个合适的规模应用,代表了一个现实的近期测试案例。哈萨克斯坦阿斯塔纳公共汽车站候车亭的能量收集系统展示了可用于bipv中的钙钛矿太阳能电池模块(PSCMs)的潜在性能评估平台。该系统包括最大功率点跟踪(MPPT)和充电控制器,可为电子负载提供PSCM能量。根据我们的设计,公交候车亭的屋顶和侧面分别有不透明和ST的pscm。考虑了5月(最好的情况)和12月(最坏的情况)的情况。结果表明,即使在最坏的情况下,配备pscms的公交车站候车亭也能产生足够的日常负荷能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Cities
Smart Cities Multiple-
CiteScore
11.20
自引率
6.20%
发文量
0
审稿时长
11 weeks
期刊介绍: Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.
期刊最新文献
Vision-Based Object Localization and Classification for Electric Vehicle Driving Assistance Smart Grid Resilience for Grid-Connected PV and Protection Systems under Cyber Threats Tech Giants’ Responsible Innovation and Technology Strategy: An International Policy Review Grid Impact of Wastewater Resource Recovery Facilities-Based Community Microgrids Development of a Microservice-Based Storm Sewer Simulation System with IoT Devices for Early Warning in Urban Areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1