Pub Date : 2024-07-16DOI: 10.3390/smartcities7040070
Tony Castillo-Calzadilla, Jesús Oroya-Villalta, Cruz E Borges
There is a clear European Strategy to transition by 2050 from a fossil fuel-based economy to a completely new system based on renewable energy resources, with electricity as the main energy carrier. Positive Energy Districts (PEDs) are urban areas that produce at least as much energy as their yearly consumption. To meet this objective, they must incorporate distributed generation based on renewable systems within their boundaries. This article considers the fluctuations in electricity prices and local renewable availability and develops a PED model with a centralised energy storage system focused on electricity self-sufficiency and self-consumption. We present a fuzzy logic-based energy management system which optimises the state of charge of the energy storage solution considering local electricity production and loads along with the contracted electric tariff. The methodology is tested in a PED comprising 360 households in Bilbao (a city in the north of Spain), setting various scenarios, including changes in the size of the electric storage, long-term climate change effects, and extreme changes in the price of energy carriers. The study revealed that the assessed PED could reach up to 75.6% self-sufficiency and 76.8% self-consumption, with climate change expected to improve these values. On economic aspects, the return on investment of the proposal ranges from 6 up to 12 years depending on the configuration choice. Also, the case that boosts the economic viability is tight to non-business as usual (BaU), whichever event spiked up the prices or climate change conditions shortens the economic variables. The average bill is around 12.89 EUR/month per house for scenario BaU; meanwhile, a catastrophic event increases the bill by as much as 76.7%. On the other hand, climate crisis events impact energy generation, strengthening this and, as a consequence, slightly reducing the bill by up to 11.47 EUR/month.
{"title":"Energy Management System for a Residential Positive Energy District Based on Fuzzy Logic Approach (RESTORATIVE)","authors":"Tony Castillo-Calzadilla, Jesús Oroya-Villalta, Cruz E Borges","doi":"10.3390/smartcities7040070","DOIUrl":"https://doi.org/10.3390/smartcities7040070","url":null,"abstract":"There is a clear European Strategy to transition by 2050 from a fossil fuel-based economy to a completely new system based on renewable energy resources, with electricity as the main energy carrier. Positive Energy Districts (PEDs) are urban areas that produce at least as much energy as their yearly consumption. To meet this objective, they must incorporate distributed generation based on renewable systems within their boundaries. This article considers the fluctuations in electricity prices and local renewable availability and develops a PED model with a centralised energy storage system focused on electricity self-sufficiency and self-consumption. We present a fuzzy logic-based energy management system which optimises the state of charge of the energy storage solution considering local electricity production and loads along with the contracted electric tariff. The methodology is tested in a PED comprising 360 households in Bilbao (a city in the north of Spain), setting various scenarios, including changes in the size of the electric storage, long-term climate change effects, and extreme changes in the price of energy carriers. The study revealed that the assessed PED could reach up to 75.6% self-sufficiency and 76.8% self-consumption, with climate change expected to improve these values. On economic aspects, the return on investment of the proposal ranges from 6 up to 12 years depending on the configuration choice. Also, the case that boosts the economic viability is tight to non-business as usual (BaU), whichever event spiked up the prices or climate change conditions shortens the economic variables. The average bill is around 12.89 EUR/month per house for scenario BaU; meanwhile, a catastrophic event increases the bill by as much as 76.7%. On the other hand, climate crisis events impact energy generation, strengthening this and, as a consequence, slightly reducing the bill by up to 11.47 EUR/month.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141643701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.3390/smartcities7040069
Mounir Azzam, Valerie Graw, Eva Meidler, A. Rienow
In post-war environments, property valuation encounters obstacles stemming from widespread destruction, population displacement, and complex legal frameworks. This study addresses post-war property valuation by integrating war-related considerations into the ISO 19152 Land Administration Domain Model, resulting in a valuation information model for Syria’s post-war landscape, serving as a reference for property valuation in conflict-affected areas. Additionally, property valuation is enhanced through visualization modeling, aiding the comprehension of war-related attributes amidst and following conflict. We utilize data from a field survey of 243 Condominium Units in the Harasta district, Rural Damascus Governorate. These data were collected through quantitative interviews with real estate companies and residents to uncover facts about property prices and war-related conditions. Our quantitative data are analyzed using inferential statistics of mean housing prices to assess the impact of war-related variables on property values during both wartime and post-war periods. The analysis reveals significant fluctuations in prices during wartime, with severely damaged properties experiencing notable declines (about −75%), followed by moderately damaged properties (about −60%). In the post-war phase, rehabilitated properties demonstrate price improvements (1.8% to 22.5%), while others continue to depreciate (−55% to −65%). These insights inform post-war property valuation standards, facilitating sustainable investment during the post-war recovery phase.
在战后环境中,财产估值会遇到广泛破坏、人口流离失所和复杂法律框架带来的障碍。本研究通过将战争相关因素纳入 ISO 19152 土地管理域模型来解决战后财产估值问题,从而为叙利亚的战后景观建立了一个估值信息模型,为受冲突影响地区的财产估值提供参考。此外,还通过可视化建模加强了财产估值,有助于理解冲突中和冲突后与战争相关的属性。我们利用了对大马士革农村省哈拉斯塔区 243 个共有公寓单位的实地调查数据。这些数据是通过对房地产公司和居民的定量访谈收集的,目的是揭示有关房地产价格和战争相关情况的事实。我们使用平均房价的推断统计法对定量数据进行分析,以评估战争相关变量在战时和战后对房产价值的影响。分析结果显示,战时房价波动明显,受损严重的房产价格下降明显(约-75%),其次是受损程度一般的房产(约-60%)。在战后阶段,修复后的房产价格有所提高(1.8% 到 22.5%),而其他房产则继续贬值(-55% 到 -65%)。这些见解为战后房产估价标准提供了参考,有利于战后恢复阶段的可持续投资。
{"title":"Enhancing Property Valuation in Post-War Recovery: Integrating War-Related Attributes into Real Estate Valuation Practices","authors":"Mounir Azzam, Valerie Graw, Eva Meidler, A. Rienow","doi":"10.3390/smartcities7040069","DOIUrl":"https://doi.org/10.3390/smartcities7040069","url":null,"abstract":"In post-war environments, property valuation encounters obstacles stemming from widespread destruction, population displacement, and complex legal frameworks. This study addresses post-war property valuation by integrating war-related considerations into the ISO 19152 Land Administration Domain Model, resulting in a valuation information model for Syria’s post-war landscape, serving as a reference for property valuation in conflict-affected areas. Additionally, property valuation is enhanced through visualization modeling, aiding the comprehension of war-related attributes amidst and following conflict. We utilize data from a field survey of 243 Condominium Units in the Harasta district, Rural Damascus Governorate. These data were collected through quantitative interviews with real estate companies and residents to uncover facts about property prices and war-related conditions. Our quantitative data are analyzed using inferential statistics of mean housing prices to assess the impact of war-related variables on property values during both wartime and post-war periods. The analysis reveals significant fluctuations in prices during wartime, with severely damaged properties experiencing notable declines (about −75%), followed by moderately damaged properties (about −60%). In the post-war phase, rehabilitated properties demonstrate price improvements (1.8% to 22.5%), while others continue to depreciate (−55% to −65%). These insights inform post-war property valuation standards, facilitating sustainable investment during the post-war recovery phase.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141676465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.3390/smartcities7040068
Amr Adel, Noor HS Alani
The necessity for substantial societal transformations to meet the Sustainable Development Goals (SDGs) has become more urgent, especially in the wake of the COVID-19 pandemic. This paper examines the critical role of disruptive technologies, specifically Industry 5.0 and Society 5.0, in driving sustainable development. Our research investigation focuses on their impact on product development, healthcare innovation, pandemic response, and the development of nature-inclusive business models and smart cities. We analyze how these technologies influence SDGs 3 (Good Health and Well-Being), 4 (Quality Education), 9 (Industry, Innovation, and Infrastructure), and 11 (Sustainable Cities and Communities). By integrating these concepts into smart cities, we propose a coordinated framework to enhance the achievement of these goals. Additionally, we provide a SWOT analysis to evaluate this approach. This study aims to guide industrialists, policymakers, and researchers in leveraging technological advancements to meet the SDGs.
{"title":"Human-Centric Collaboration and Industry 5.0 Framework in Smart Cities and Communities: Fostering Sustainable Development Goals 3, 4, 9, and 11 in Society 5.0","authors":"Amr Adel, Noor HS Alani","doi":"10.3390/smartcities7040068","DOIUrl":"https://doi.org/10.3390/smartcities7040068","url":null,"abstract":"The necessity for substantial societal transformations to meet the Sustainable Development Goals (SDGs) has become more urgent, especially in the wake of the COVID-19 pandemic. This paper examines the critical role of disruptive technologies, specifically Industry 5.0 and Society 5.0, in driving sustainable development. Our research investigation focuses on their impact on product development, healthcare innovation, pandemic response, and the development of nature-inclusive business models and smart cities. We analyze how these technologies influence SDGs 3 (Good Health and Well-Being), 4 (Quality Education), 9 (Industry, Innovation, and Infrastructure), and 11 (Sustainable Cities and Communities). By integrating these concepts into smart cities, we propose a coordinated framework to enhance the achievement of these goals. Additionally, we provide a SWOT analysis to evaluate this approach. This study aims to guide industrialists, policymakers, and researchers in leveraging technological advancements to meet the SDGs.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141676300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.3390/smartcities7040067
Lasse Kappel Mortensen, H. Shaker
As district heating networks age, current asset management practices, such as those relying on static life expectancies and age- and rule-based approaches, need to be replaced by data-driven asset management. As an alternative to physics-of-failure models that are typically preferred in the literature, this paper explores the application of more accessible traditional and novel machine learning-enabled reliability models for analyzing the reliability of district heating pipes and demonstrates how common data deficiencies can be accommodated by modifying the models’ likelihood expressions. The tested models comprised the Herz, Weibull, and the Neural Weibull Proportional Hazard models. An assessment of these models on data from an actual district heating network in Funen, Denmark showed that the relative youth of the network complicated the validation of the models’ distributional assumptions. However, a comparative evaluation of the models showed that there is a significant benefit in employing data-driven reliability modeling as they enable pipes to be differentiated based on the their working conditions and intrinsic features. Therefore, it is concluded that data-driven reliability models outperform current asset management practices such as age-based vulnerability ranking.
{"title":"Data-Driven Reliability Prediction for District Heating Networks","authors":"Lasse Kappel Mortensen, H. Shaker","doi":"10.3390/smartcities7040067","DOIUrl":"https://doi.org/10.3390/smartcities7040067","url":null,"abstract":"As district heating networks age, current asset management practices, such as those relying on static life expectancies and age- and rule-based approaches, need to be replaced by data-driven asset management. As an alternative to physics-of-failure models that are typically preferred in the literature, this paper explores the application of more accessible traditional and novel machine learning-enabled reliability models for analyzing the reliability of district heating pipes and demonstrates how common data deficiencies can be accommodated by modifying the models’ likelihood expressions. The tested models comprised the Herz, Weibull, and the Neural Weibull Proportional Hazard models. An assessment of these models on data from an actual district heating network in Funen, Denmark showed that the relative youth of the network complicated the validation of the models’ distributional assumptions. However, a comparative evaluation of the models showed that there is a significant benefit in employing data-driven reliability modeling as they enable pipes to be differentiated based on the their working conditions and intrinsic features. Therefore, it is concluded that data-driven reliability models outperform current asset management practices such as age-based vulnerability ranking.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141688284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.3390/smartcities7040066
K. Turoń
Car-sharing services, which provide short-term vehicle rentals in urban centers, are rapidly expanding globally but also face numerous challenges. A significant challenge is the effective management of fleet selection to meet user expectations. Addressing this challenge, as well as methodological and literature gaps, the objective of this article is to present an original methodology that supports the evaluation of the suitability of vehicle fleets used in car-sharing systems and to identify the vehicle features preferred by users necessary for specific types of travel. The proposed methodology, which incorporates elements of transportation system modeling and concurrent analysis, was tested using a real-world case study involving a car-sharing service operator. The research focused on the commuting needs of car-sharing users for work or educational purposes. The study was conducted for a German car-sharing operator in Berlin. The research was carried out from 1 January to 30 June 2022. The findings indicate that the best vehicles for the respondents are large cars representing classes D or E, equipped with a combustion engine with a power of 63 to 149 kW, at least parking sensors, navigation, hands-free, lane assistant, heated seats, and high safety standards as indicated by Euro NCAP ratings, offered at the lowest possible rental price. The results align with market trends in Germany, which focus on the sale of at least medium-sized vehicles. This suggests a limitation of small cars in car-sharing systems, which were ideologically supposed to be a key fleet in those kinds of services. The developed methodology supports both system operators in verifying whether their fleet meets user needs and urban policymakers in effectively managing policies towards car-sharing services, including fleet composition, pricing regulations, and vehicle equipment standards. This work represents a significant step towards enhancing the efficiency of car-sharing services in the context of smart cities, where personalization and optimizing transport are crucial for sustainable development.
{"title":"Personalization of the Car-Sharing Fleet Selected for Commuting to Work or for Educational Purposes—An Opportunity to Increase the Attractiveness of Systems in Smart Cities","authors":"K. Turoń","doi":"10.3390/smartcities7040066","DOIUrl":"https://doi.org/10.3390/smartcities7040066","url":null,"abstract":"Car-sharing services, which provide short-term vehicle rentals in urban centers, are rapidly expanding globally but also face numerous challenges. A significant challenge is the effective management of fleet selection to meet user expectations. Addressing this challenge, as well as methodological and literature gaps, the objective of this article is to present an original methodology that supports the evaluation of the suitability of vehicle fleets used in car-sharing systems and to identify the vehicle features preferred by users necessary for specific types of travel. The proposed methodology, which incorporates elements of transportation system modeling and concurrent analysis, was tested using a real-world case study involving a car-sharing service operator. The research focused on the commuting needs of car-sharing users for work or educational purposes. The study was conducted for a German car-sharing operator in Berlin. The research was carried out from 1 January to 30 June 2022. The findings indicate that the best vehicles for the respondents are large cars representing classes D or E, equipped with a combustion engine with a power of 63 to 149 kW, at least parking sensors, navigation, hands-free, lane assistant, heated seats, and high safety standards as indicated by Euro NCAP ratings, offered at the lowest possible rental price. The results align with market trends in Germany, which focus on the sale of at least medium-sized vehicles. This suggests a limitation of small cars in car-sharing systems, which were ideologically supposed to be a key fleet in those kinds of services. The developed methodology supports both system operators in verifying whether their fleet meets user needs and urban policymakers in effectively managing policies towards car-sharing services, including fleet composition, pricing regulations, and vehicle equipment standards. This work represents a significant step towards enhancing the efficiency of car-sharing services in the context of smart cities, where personalization and optimizing transport are crucial for sustainable development.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141684176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.3390/smartcities7040065
R. Wolniak, Bożena Gajdzik, Michaline Grebski, Roman Danel, W. Grebski
This paper examines business model implementations in three leading European smart cities: London, Amsterdam, and Berlin. Through a systematic literature review and comparative analysis, the study identifies and analyzes various business models employed in these urban contexts. The findings reveal a diverse array of models, including public–private partnerships, build–operate–transfer arrangements, performance-based contracts, community-centric models, innovation hubs, revenue-sharing models, outcome-based financing, and asset monetization strategies. Each city leverages a unique combination of these models to address its specific urban challenges and priorities. The study highlights the role of PPPs in large-scale infrastructure projects, BOT arrangements in transportation solutions, and performance-based contracts in driving efficiency and accountability. It also explores the benefits of community-centric models, innovation hubs, revenue-sharing models, outcome-based financing, and asset monetization strategies in enhancing the sustainability, efficiency, and livability of smart cities. The paper offers valuable insights for policymakers, urban planners, and researchers seeking to advance smart city development worldwide.
{"title":"Business Models Used in Smart Cities—Theoretical Approach with Examples of Smart Cities","authors":"R. Wolniak, Bożena Gajdzik, Michaline Grebski, Roman Danel, W. Grebski","doi":"10.3390/smartcities7040065","DOIUrl":"https://doi.org/10.3390/smartcities7040065","url":null,"abstract":"This paper examines business model implementations in three leading European smart cities: London, Amsterdam, and Berlin. Through a systematic literature review and comparative analysis, the study identifies and analyzes various business models employed in these urban contexts. The findings reveal a diverse array of models, including public–private partnerships, build–operate–transfer arrangements, performance-based contracts, community-centric models, innovation hubs, revenue-sharing models, outcome-based financing, and asset monetization strategies. Each city leverages a unique combination of these models to address its specific urban challenges and priorities. The study highlights the role of PPPs in large-scale infrastructure projects, BOT arrangements in transportation solutions, and performance-based contracts in driving efficiency and accountability. It also explores the benefits of community-centric models, innovation hubs, revenue-sharing models, outcome-based financing, and asset monetization strategies in enhancing the sustainability, efficiency, and livability of smart cities. The paper offers valuable insights for policymakers, urban planners, and researchers seeking to advance smart city development worldwide.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141713937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.3390/smartcities7030058
Thiti Chanchayanon, S. Chaiprakaikeow, A. Jotisankasa, S. Inazumi
This study examines the optimization of ground source heat pump (GSHP) systems and energy piles for sustainable urban development, focusing on Southeast Asia. GSHPs, which utilize geothermal energy for indoor HVAC needs, offer a sustainable alternative to traditional systems by utilizing consistent subsurface temperatures for heating and cooling. The study highlights the importance of understanding thermal movement within the soil, especially in soft marine clays prevalent in Southeast Asia, to improve GSHP system efficiency. Using a one-dimensional finite difference model, the study examines the effects of soil thermal conductivity and density on system performance. The results show that GSHP systems, especially when integrated with energy piles, significantly reduce electricity consumption and greenhouse gas emissions, underscoring their potential to mitigate the urban heat island effect in densely populated areas. Despite challenges posed by the region’s hot and humid climate, which could affect long-term effectiveness, the study highlights the need for further study, including field experiments and advanced modeling techniques, to optimize GSHP configurations and fully exploit geothermal energy in urban environments. The study’s insights into soil thermal dynamics and system design optimization contribute to advancing sustainable urban infrastructure development.
{"title":"Optimization of Geothermal Heat Pump Systems for Sustainable Urban Development in Southeast Asia","authors":"Thiti Chanchayanon, S. Chaiprakaikeow, A. Jotisankasa, S. Inazumi","doi":"10.3390/smartcities7030058","DOIUrl":"https://doi.org/10.3390/smartcities7030058","url":null,"abstract":"This study examines the optimization of ground source heat pump (GSHP) systems and energy piles for sustainable urban development, focusing on Southeast Asia. GSHPs, which utilize geothermal energy for indoor HVAC needs, offer a sustainable alternative to traditional systems by utilizing consistent subsurface temperatures for heating and cooling. The study highlights the importance of understanding thermal movement within the soil, especially in soft marine clays prevalent in Southeast Asia, to improve GSHP system efficiency. Using a one-dimensional finite difference model, the study examines the effects of soil thermal conductivity and density on system performance. The results show that GSHP systems, especially when integrated with energy piles, significantly reduce electricity consumption and greenhouse gas emissions, underscoring their potential to mitigate the urban heat island effect in densely populated areas. Despite challenges posed by the region’s hot and humid climate, which could affect long-term effectiveness, the study highlights the need for further study, including field experiments and advanced modeling techniques, to optimize GSHP configurations and fully exploit geothermal energy in urban environments. The study’s insights into soil thermal dynamics and system design optimization contribute to advancing sustainable urban infrastructure development.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141355254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10DOI: 10.3390/smartcities7030057
R. Wolniak, K. Stecuła
As urbanization continues to pose new challenges for cities around the world, the concept of smart cities is a promising solution, with artificial intelligence (AI) playing a central role in this transformation. This paper presents a literature review of AI solutions applied in smart cities, focusing on its six main areas: smart mobility, smart environment, smart governance, smart living, smart economy, and smart people. The analysis covers publications from 2021 to 2024 available on Scopus. This paper examines the application of AI in each area and identifies barriers, advances, and future directions. The authors set the following goals of the analysis: (1) to identify solutions and applications using artificial intelligence in smart cities; (2) to identify the barriers to implementation of artificial intelligence in smart cities; and (3) to explore directions of the usage of artificial intelligence in smart cities.
{"title":"Artificial Intelligence in Smart Cities—Applications, Barriers, and Future Directions: A Review","authors":"R. Wolniak, K. Stecuła","doi":"10.3390/smartcities7030057","DOIUrl":"https://doi.org/10.3390/smartcities7030057","url":null,"abstract":"As urbanization continues to pose new challenges for cities around the world, the concept of smart cities is a promising solution, with artificial intelligence (AI) playing a central role in this transformation. This paper presents a literature review of AI solutions applied in smart cities, focusing on its six main areas: smart mobility, smart environment, smart governance, smart living, smart economy, and smart people. The analysis covers publications from 2021 to 2024 available on Scopus. This paper examines the application of AI in each area and identifies barriers, advances, and future directions. The authors set the following goals of the analysis: (1) to identify solutions and applications using artificial intelligence in smart cities; (2) to identify the barriers to implementation of artificial intelligence in smart cities; and (3) to explore directions of the usage of artificial intelligence in smart cities.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141364772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.3390/smartcities7030056
L. Hammoumi, M. Maanan, H. Rhinane
Cities worldwide are attempting to be labelled as smart, but truly classifying as such remains a great challenge. This study aims to use artificial intelligence (AI) to classify the performance of smart cities and identify the factors linked to their smartness. Based on residents’ perceptions of urban structures and technological applications, this study included 200 cities globally. For 147 cities, we gathered the perceptions of 120 residents per city through a survey of 39 questions covering two main pillars: ‘Structures’, referring to the existing infrastructure of the city, and the ‘Technology’ pillar that describes the technological provisions and services available to the inhabitants. These pillars were evaluated across five key areas: health and safety, mobility, activities, opportunities, and governance. For the remaining 53 cities, scores were derived by analyzing pertinent data collected from various online resources. Multiple machine learning algorithms, including Random Forest, Artificial Neural Network, Support Vector Machine, and Gradient Boost, were tested and compared in order to select the best one. The results showed that Random Forest and the Artificial Neural Network are the best trained models that achieved the highest levels of accuracy. This study provides a robust framework for using machine learning to identify and assess smart cities, offering valuable insights for future research and urban planning.
{"title":"Characterizing Smart Cities Based on Artificial Intelligence","authors":"L. Hammoumi, M. Maanan, H. Rhinane","doi":"10.3390/smartcities7030056","DOIUrl":"https://doi.org/10.3390/smartcities7030056","url":null,"abstract":"Cities worldwide are attempting to be labelled as smart, but truly classifying as such remains a great challenge. This study aims to use artificial intelligence (AI) to classify the performance of smart cities and identify the factors linked to their smartness. Based on residents’ perceptions of urban structures and technological applications, this study included 200 cities globally. For 147 cities, we gathered the perceptions of 120 residents per city through a survey of 39 questions covering two main pillars: ‘Structures’, referring to the existing infrastructure of the city, and the ‘Technology’ pillar that describes the technological provisions and services available to the inhabitants. These pillars were evaluated across five key areas: health and safety, mobility, activities, opportunities, and governance. For the remaining 53 cities, scores were derived by analyzing pertinent data collected from various online resources. Multiple machine learning algorithms, including Random Forest, Artificial Neural Network, Support Vector Machine, and Gradient Boost, were tested and compared in order to select the best one. The results showed that Random Forest and the Artificial Neural Network are the best trained models that achieved the highest levels of accuracy. This study provides a robust framework for using machine learning to identify and assess smart cities, offering valuable insights for future research and urban planning.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141375349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.3390/smartcities7030055
Jamel Riahi, Hamza Nasri, Abdelkader Mami, Silvano Vergura
Agricultural greenhouses incorporate intricate systems to regulate the internal climate. Among the crucial climatic variables, indoor temperature and humidity take precedence in establishing an optimal environment for plant production and growth. The present research emphasizes the efficacy of employing intelligent control systems in the automation of the indoor climate for smart insulated greenhouses (SIGs), utilizing a fuzzy logic controller (FLC). This paper proposes the use of an FLC to reduce the energy consumption of a greenhouse. In the first step, a thermodynamic model is presented and experimentally validated based on thermal heat exchanges between the indoor and outdoor climatic variables. The outcomes show the effectiveness of the proposed model in controlling indoor air temperature and relative humidity with a low error percentage. Secondly, several fuzzy logic control models have been developed to regulate the indoor temperature and humidity for cold and hot periods. The results show the good performance of the proposed FLC model as highlighted by the statistical analysis. In fact, the root mean squared error (RMSE) is very small and equal to 0.69% for temperature and 0.23% for humidity, whereas the efficiency factor (EF) of the fuzzy logic control is equal to 99.35% for temperature control and 99.86% for humidity control.
{"title":"Effectiveness of the Fuzzy Logic Control to Manage the Microclimate Inside a Smart Insulated Greenhouse","authors":"Jamel Riahi, Hamza Nasri, Abdelkader Mami, Silvano Vergura","doi":"10.3390/smartcities7030055","DOIUrl":"https://doi.org/10.3390/smartcities7030055","url":null,"abstract":"Agricultural greenhouses incorporate intricate systems to regulate the internal climate. Among the crucial climatic variables, indoor temperature and humidity take precedence in establishing an optimal environment for plant production and growth. The present research emphasizes the efficacy of employing intelligent control systems in the automation of the indoor climate for smart insulated greenhouses (SIGs), utilizing a fuzzy logic controller (FLC). This paper proposes the use of an FLC to reduce the energy consumption of a greenhouse. In the first step, a thermodynamic model is presented and experimentally validated based on thermal heat exchanges between the indoor and outdoor climatic variables. The outcomes show the effectiveness of the proposed model in controlling indoor air temperature and relative humidity with a low error percentage. Secondly, several fuzzy logic control models have been developed to regulate the indoor temperature and humidity for cold and hot periods. The results show the good performance of the proposed FLC model as highlighted by the statistical analysis. In fact, the root mean squared error (RMSE) is very small and equal to 0.69% for temperature and 0.23% for humidity, whereas the efficiency factor (EF) of the fuzzy logic control is equal to 99.35% for temperature control and 99.86% for humidity control.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141380720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}