Collaborative scheduling of machining-assembly in complex multiple parallel production lines environment considering kitting constraints

IF 1.6 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL International Journal of Industrial Engineering Computations Pub Date : 2023-01-01 DOI:10.5267/j.ijiec.2023.7.003
Guangyan Xu, Zailin Guan, Kai Peng, Lei Yue
{"title":"Collaborative scheduling of machining-assembly in complex multiple parallel production lines environment considering kitting constraints","authors":"Guangyan Xu, Zailin Guan, Kai Peng, Lei Yue","doi":"10.5267/j.ijiec.2023.7.003","DOIUrl":null,"url":null,"abstract":"In multi-stage machining-assembly production, collaborative scheduling for multiple production lines can effectively improve the execution efficiency of production planning and increase the effective output of the production system. In this paper, a production scheduling mathematical model was constructed for the collaborative scheduling problem of machining-assembly multi-production lines with kitting constraints, with the optimization objectives of minimizing assembly completion time and tardiness time. For the scheduling model, the product assembly process is constrained by the machining sequence of the jobs on the machining lines. Only by collaborating on the production scheduling schemes of the machine line and the assembly line as a whole can the output efficiency of the product on the assembly line be improved. An improved hybrid multi-objective optimization algorithm named SMOEA/D is designed to solve this scheduling model. The algorithm uses adaptive parents’ selection and mutation rate strategies and integrates the Tabu search strategy for the search process in the solution space when the solution of the sub-problem has not been improved after specified search generations, to improve the local search ability and search accuracy of MOEA/D algorithm. To verify the performance of the SMOEA/D algorithm in solving machining-assembly collaborative scheduling problems in production systems with different resource configurations and scales, two sets of numerical experiments were designed, corresponding to situations where the number of operations on each production line is equal or unequal. The running results of the proposed algorithm were compared with three other well-known multi-objective algorithms. The comparison results indicate that the SMOEA/D algorithm is effective and superior for solving such problems.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"41 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering Computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.ijiec.2023.7.003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

Abstract

In multi-stage machining-assembly production, collaborative scheduling for multiple production lines can effectively improve the execution efficiency of production planning and increase the effective output of the production system. In this paper, a production scheduling mathematical model was constructed for the collaborative scheduling problem of machining-assembly multi-production lines with kitting constraints, with the optimization objectives of minimizing assembly completion time and tardiness time. For the scheduling model, the product assembly process is constrained by the machining sequence of the jobs on the machining lines. Only by collaborating on the production scheduling schemes of the machine line and the assembly line as a whole can the output efficiency of the product on the assembly line be improved. An improved hybrid multi-objective optimization algorithm named SMOEA/D is designed to solve this scheduling model. The algorithm uses adaptive parents’ selection and mutation rate strategies and integrates the Tabu search strategy for the search process in the solution space when the solution of the sub-problem has not been improved after specified search generations, to improve the local search ability and search accuracy of MOEA/D algorithm. To verify the performance of the SMOEA/D algorithm in solving machining-assembly collaborative scheduling problems in production systems with different resource configurations and scales, two sets of numerical experiments were designed, corresponding to situations where the number of operations on each production line is equal or unequal. The running results of the proposed algorithm were compared with three other well-known multi-objective algorithms. The comparison results indicate that the SMOEA/D algorithm is effective and superior for solving such problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑装配约束的复杂多平行生产线加工装配协同调度
在多阶段加工装配生产中,多生产线协同调度可以有效提高生产计划的执行效率,增加生产系统的有效产出。针对具有装配约束的加工装配多生产线协同调度问题,以装配完成时间和延迟时间最小为优化目标,建立了生产调度数学模型。在调度模型中,产品装配过程受加工线上作业的加工顺序的约束。只有将机器线和装配线的生产调度方案作为一个整体进行协作,才能提高装配线上产品的输出效率。针对该调度模型,设计了一种改进的混合多目标优化算法SMOEA/D。该算法采用自适应父代选择和突变率策略,并在子问题解经过指定搜索代后未得到改进时,将禁忌搜索策略集成到解空间的搜索过程中,以提高MOEA/D算法的局部搜索能力和搜索精度。为了验证SMOEA/D算法在不同资源配置和规模的生产系统中解决加工装配协同调度问题的性能,设计了两组数值实验,分别对应每条生产线上的作业数相等和不相等的情况。将该算法的运行结果与其他三种知名的多目标算法进行了比较。对比结果表明,SMOEA/D算法是解决此类问题的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
9.10%
发文量
35
审稿时长
20 weeks
期刊最新文献
A unifying framework and a mathematical model for the Slab Stack Shuffling Problem Heuristics and metaheuristics to minimize makespan for flowshop with peak power consumption constraints Minimizing operating expenditures for a manufacturing system featuring quality reassurances, probabilistic failures, overtime, and outsourcing Composite heuristics and water wave optimality algorithms for tri-criteria multiple job classes and customer order scheduling on a single machine Investigating the collective impact of postponement, scrap, and external suppliers on multiproduct replenishing decision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1